Recomendaciones para el estudio y manejo farmacológico en pacientes adultos con sospecha de infección por SARS-CoV-2 (COVID-19)

Documento conjunto de Sociedad Chilena de Infectología, Sociedad Chilena de Medicina Intensiva y Sociedad Chilena de Enfermedades Respiratorias.

Octubre 2020

Recommendations for the study and pharmacological management in adult patients with suspected infection by SARS-CoV-2 (COVID-19)

Elaborado por:

- Comité de Antimicrobianos Sociedad Chilena de Infectología (SOCHINF): Dr. Jorge Pérez, QF. Ruth Rosales, QF. Fernando Bernal, Dr. José Miguel Arancibia, Dra. Daniela Pavez, QF. Claudio González, Dra. Luz María Fuenzalida, Dra. Regina Pérez, Dra. Mirta Acuña, Dra. María Eugenia Pinto.
- Sociedad Chilena de Medicina intensiva (SOCHIMI): Dra. Cecilia Luengo, Dr. Tomás Regueira, QF. Mariana Arias, QF. Paula Impellizzeri, QF. Cristian Paredes, QF. Rubén Hernández.
- Sociedad Chilena de Enfermedades Respiratorias: Dr. Francisco Arancibia, Dr. Raúl Riquelme.
- Colaborador: Dr. Leonardo Changueo.

Un documento similar referido a esta patología en niños se publica en forma paralela. Estas recomendaciones pueden variar según evolucione nuestro conocimiento acerca de la enfermedad y la situación epidemiológica. La evidencia actual es limitada y sujeta a cambios y actualizaciones.

Introducción

I 31 de diciembre de 2019, las autoridades de la ciudad de Wuhan en la provincia de Hubei, China, reportaron 27 casos de síndrome respiratorio agudo de etiología desconocida. El 7 de enero de 2020, las autoridades chinas informaron la identificación de un nuevo coronavirus, denominado "Coronavirus 2 del Síndrome Respiratorio Agudo Severo (SARS-CoV-2)", como agente etiológico de este síndrome¹. El 3 de marzo se diagnosticó el primer caso de infección por virus SARS-CoV-2 en Chile. El 11 de marzo, la Organización Mundial de la Salud (OMS) declaró la infección por SARS-CoV-2, denominada "COVID-19", una pandemia, la cual se ha convertido en una emergencia sanitaria mundial.

La COVID-19 produce un cuadro respiratorio que se manifiesta en 80% de los casos como una infección respiratoria alta leve². Sin embargo, en 20% puede producir una neumonía con distintos grados de hipoxemia que requiere hospitalización o bien, descompensación de una patología crónica del paciente infectado que también deba hospitalizarse. De este grupo, 5 a 16% requerirá ingresar a una Unidad de Cuidados Intensivos (UCI), principalmente por hipoxemia grave, con necesidad de ventilación mecánica invasiva (VMI). Si bien se ha estimado la letalidad global de la COVID-19 entre 2 y 7%, dependiendo de los factores de riesgo de la población y la capacidad de respuesta del sistema sanitario, la mortalidad en los pacientes que requieren VMI puede sobrepasar el 60%.

La emergencia y excepcionalidad de esta situación conllevan que,

Correspondencia:

Información para correspondencia al final del texto.

actualmente, no exista medicamento específico alguno, aprobado para el tratamiento de COVID-19, basando su manejo en medidas de soporte precoz. No obstante, la elevada letalidad de los casos más graves ha llevado a buscar alternativas potenciales de tratamiento en fármacos con otras indicaciones. Hasta la fecha, se han publicado varios reportes de casos y protocolos de manejo farmacológico de países europeos y asiáticos que ya han sido afectados por esta pandemia, y últimamente, están apareciendo los reportes preliminares de estudios aleatorizados utilizando algunos de estos fármacos en pacientes en diferentes etapas evolutivas y con distintos niveles de gravedad de la enfermedad.

Dado que la administración de estos fármacos a pacientes con COVID-19 constituye un uso "fuera de indicación", los profesionales de las Sociedades Chilenas de Infectología (SOCHINF), Medicina Intensiva (SO-CHIMI) v Enfermedades Respiratorias (SER), creemos que es importante analizar cuidadosamente la evidencia publicada respecto de dichos fármacos y el balance riesgo-beneficio durante su utilización, para ofrecer a quienes manejan este tipo de pacientes una recomendación que sea potencialmente beneficiosa, cuyos riesgos sean mínimos y que sea factible de aplicar en la mayor parte de los centros asistenciales de nuestro país.

Métodos diagnósticos de infección por SARS-CoV-2³⁻¹⁹

Ver Tabla 1.

Criterios de hospitalización, estudio v manejo general inicial

Criterios de hospitalización

- Paciente con COVID-19 y reagudización de alguna co-morbilidad, con o sin neumonía.
- Paciente con neumonía y requerimientos de oxígeno:
- Se pueden utilizar criterios CURB-65 (mayor a 2) para decidir hospitalización (Anexo 1).
- Sala básica: En caso de estabilidad clínica y requerimientos de oxígeno hasta 4 lt/min.
- Unidad de Cuidados Intermedios: Altos requerimientos de oxígeno, necesidad de soporte ventilatorio.
- Unidad de Cuidados Intensivos: Necesidad de VMI y/o con inestabilidad hemodinámica.
- También puede utilizarse para evaluar la gravedad al ingreso, los criterios de neumonía adquirida en la comunidad (NAC) según Infectious Disease Society of America/American Thoracic Society (IDSA/ATS) (Anexo 2).

Se sugiere considerar la hospitalización en pacientes con neumonía al momento de la evaluación, que se sospeche puedan agravarse, porque presenten factores de riesgo tales como edad > 65 años y/o co-morbilidad relevante (patología cardiovascular, diabetes mellitus, enfermedad respiratoria crónica, inmunosupresión) (Tabla 2).

Estudio inicial de pacientes COVID-19 que cumplen criterios de hospitalización^{21,22}

- Panel viral respiratorio completo o acortado (influenza A/B y VRS), si la situación epidemiológica lo amerita.
- Hemocultivos periféricos (2) en caso de sospecha de sobreinfección bacteriana.
- Gases arteriales, electrolitos plasmáticos, hemograma, proteína C reactiva (PCR), LDH, pruebas hepáticas, glicemia, creatinina, CK total, dímero D (DD). En caso de tener disponible: ferritina, fibrinógeno y troponina.
- Radiografía de tórax PA/lateral.
- TC tórax: Si la radiografía es normal, y existe alta sospecha diagnóstica, se recomienda realizar TC de tórax de estar disponible. Priorizar la TC de tórax en pacientes hospitalizados o sintomáticos con factores de riesgo. En pacientes que ingresan a la unidad de paciente crítico se recomienda realizar TC de tórax.
- Estudiar otras etiologías de infección respiratoria: antígenos urinarios para Streptococcus pneumoniae y Legionella pneumophila (neumonía grave) de estar disponibles, si el paciente se encuentra en Unidad de Cuidados intensivos o con sospecha de sobreinfección bacteriana.
- Baciloscopias (2) y cultivo para micobacterias según expresión clínica.
- Serología para VIH.
- Ante un cuadro clínico muy sugerente de COVID-19 con reacción de polimerasa en cadena (RPC) inicial negativa, ésta debe repetirse para aumentar su sensibilidad, idealmente de tracto respiratorio inferior.
- Considerar serología en paciente con alta sospecha clínica, RPC negativa y sintomático por más de 10 días.

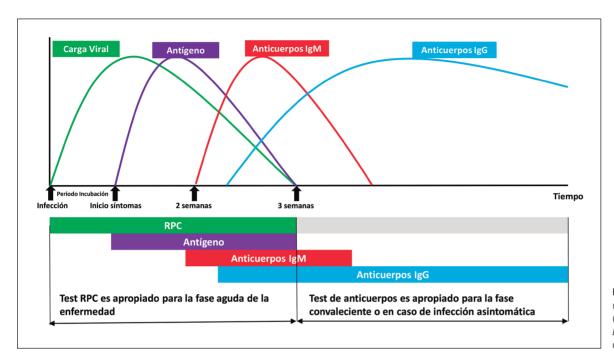
Manejo inicial de pacientes hospitalizados

Precauciones para el manejo de los pacientes: precauciones estándar (higiene de manos) + precaución de contacto (delantal manga larga y guantes) + precaución de gotitas (mascarilla quirúrgica) y uso de antiparras o escudos faciales.

Frente a procedimientos productores de aerosoles: kinesioterapia, intubación, ventilación con bolsa y mascarilla autoinflable, reanimación cardiopulmonar, ventilación mecánica no invasiva, traqueostomía, broncoscopia, aspiración abierta de vía aérea, cambiar la mascarilla quirúrgica por una N95 o equivalente.

Rev Chilena Infectol 2020; 37 (6): 646-666 www.revinf.cl

Rev Chilena Infectol 2020; 37 (6): 646-666


inflamatorio multisistémico.

www.revinf.cl

648

	Amplificación de ácidos nucleicos	Detección de anticuerpos
¿Qué detecta?	Presencia de material genético (ARN) del virus en la muestra	Anticuerpos principalmente contra proteína spike (S) y nucleocápside (N) d SARS-CoV-2 (IgA, IgM e IgG)
Tipo de muestra	Tracto respiratorio superior:	Sangre total (venopunción)
	Hisopado nasofaríngeo y orofaríngeo	Sangre capilar (punción digital)
	Hisopado nasofaríngeo	Suero o plasma
	Hisopado orofaríngeo	'
	Hisopado nasal	
	Tracto respiratorio inferior:	
	(Ideal en IRA grave por mayor sensibilidad, pero presenta	
	mayor riesgo de generar aerosoles)	
	Esputo no inducido	
	Aspirado endotraqueal	
	Lavado broncoalveolar	
Métodos disponibles	rrt-pcr, rrt-pcr poct, rt-lamp, crispr	ELISA, Quimioluminiscencia, Inmunocromatografía (ICG)
Positividad según	Peak de positividad: 5-6 días desde iniciado los síntomas	Mediana de seroconversión:
días de evolución y	Se negativiza a partir del día 8 de iniciado los síntomas	• IgM: día 10-12
severidad (valores muy variables según estudios	Desde el día 8 al 22 sería positiva en muestras de esputo o	• IgG: día 12-14
disponibles)	heces	
Figura 1		La detección de Ac después de la 1 ^{ra} semana es de sólo un 30%, 70% durant
3		la 2 ^{da} y más de 90% en la 3 ^{ra} semana.
Utilidad	• Técnica de referencia y de elección para el diagnóstico de	Como estudio complementario en pacientes sospechosos con PCR negativa
	COVID-19	presentación tardía o complicación secundaria (Ej. PIMS) o pacientes si PCR realizados. Ideal 2 a 3 semanas después del inicio de síntomas.
		Estudios epidemiológicos de prevalencia poblacional o comunitarios.
		Estudios de prevalencia puntual como personal de salud, adultos mayore o embarazadas.
		 Detección de pacientes expuestos al virus y posibles donantes de suer
		hiperinmune.
		Evaluación de vacunas.
		Limitaciones de la serología SARS-CoV-2:
		Pueden existir falsos positivos por reactividad cruzada con otros coronavirus
		• Se desconoce si una serología positiva otorga inmunidad o protección contra una reinfección.
		• No está claro cuánto tiempo permanecen detectables los anticuerpos IgN e IgG en el tiempo.
		 Algunas personas no desarrollan anticuerpos detectables después de l infección por COVID-19.
		 La interpretación debe ser realizada en base a la clínica, epidemiología prevalencia de la enfermedad, S, E y VPP.

S: Sensibilidad; E: especificidad; VPP: valor predictivo positivo. rRT-PCR: reacción en cadena de la polimerasa con transcriptasa inversa en tiempo real; POCT: point of care testing; RT-LAMP: reverse transcription loop-mediated isothermal amplification; CRISPR: clustered regularly interspaced short palindromic repeats; PIMS: Síndrome

Figura 1. Métodos diagnósticos para SARS CoV2 (adaptada de "Interpreting Diagnostic Tests for SARS-CoV-2"20.

Epidemiología	Clínica	Laboratorio
Edad > 65 años	Frecuencia respiratoria (FR) $>$ 30 (CURB-65) (anexo 1) FR $>$ 25 en $<$ 50 años o $>$ 30 en $>$ 50 años. (SMART-COP)	Dímero D > 1.000 ng/ml
Enfermedad pulmonar	Frecuencia cardíaca > 125 lpm	Proteína C reactiva > 100 mg/L
Enfermedad renal crónica	$\mathrm{SatO_2} < 90\%$ con $\mathrm{O_2}$ ambiental en > 50 años o $< 93\%$ en < 50 años	LDH > 245 U/L
Diabetes mellitus	Confusión	Troponina elevada
НТА	Mala perfusión distal	Linfopenia
Enfermedad cardiovascular	CURB - 65 ≥ 2 (anexo 1)	Creatinina kinasa > 2 veces valor de referencia
	Obesidad IMC ≥ 30	Ferritina > 300 ug/L
Transplantado o inmunosuprimido		Imagen de neumonía multifocal o presencia de derrame pleural

- Se debe ajustar a protocolo de IAAS de cada institución.
- Oxígeno según requerimientos.
- En caso de neumonía:
 - Ante sospecha de sobreinfección bacteriana, iniciar tratamiento antimicrobiano empírico para NAC según corresponda. Si ésta se descarta, suspender el tratamiento precozmente para evitar la inducción de resistencia.
 - Iniciar oseltamivir si la vigilancia de virus respiratorio muestra aumento de circulación de virus influenza:

- 75 mg c/12 h, en pacientes con aclaramiento de creatinina ≥ 60 ml/min por 5 a 10 días.
- 30 mg c/12 h en aclaramiento de creatinina ≥ 30 y < 60 ml/min.
- 30 mg c/24 h, en aclaramiento de creatinina < 30 y \ge 10 ml/min.
- En pacientes en hemodiálisis trisemanal: 30 mg los días de diálisis post procedimiento.
- Suspender si el test de influenza es (-).
- No utilizar nebulizaciones, sólo inhaladores de dosis fija con cámara espaciadora.

Rev Chilena Infectol 2020; 37 (6): 646-666 www.revinf.cl

- No suspender la terapia corticosteroidal ni inhaladores con corticosteroides en pacientes que tienen indicación por patología crónica.
- No cambiar o suspender antihipertensivos ARA 2 o IECA si el paciente es usuario.
- En pacientes con requerimiento de O₂ y uso de musculatura accesoria, se recomienda intentar estrategia de prono vigil, y cánula nasal de alto flujo (CNAF) + mascarilla quirúrgica. Esto permite manejar adecuadamente a un porcentaje de pacientes con hipoxemia, evitando llegar a la VMI o bien, dar un manejo apropiado a pacientes en que se define como desproporcionada la VMI.

Recomendaciones para el tratamiento farmacológico pacientes con COVID-19

Ver algoritmo de manejo (Figura 2)²²⁻³⁰.

Ambulatorios

Sin neumonía o neumonía sin necesidad de oxigenoterapia:

- Manejo sintomático.
- Recomendamos NO indicar tratamiento específico en forma ambulatoria.

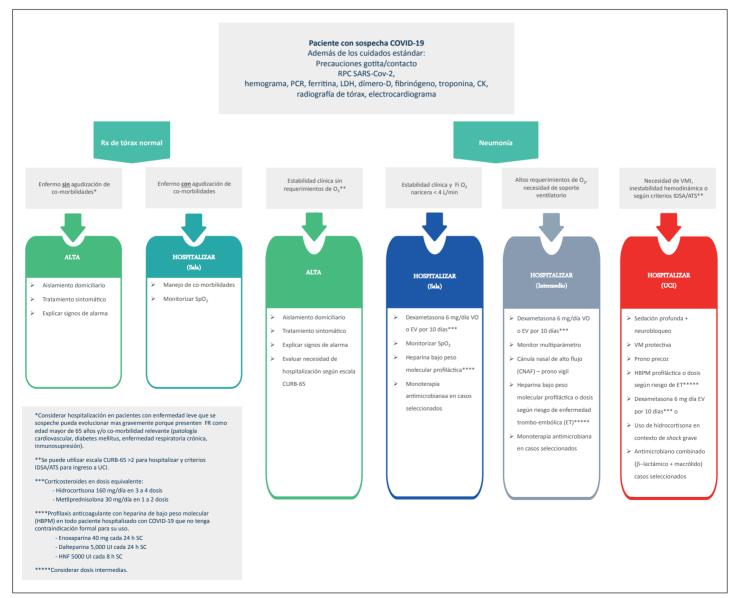


Figura 2. Algoritmo de manejo pacientes adultos con COVID-19.

Hospitalizados

Neumonía por SARS-CoV-2, y/o requerimiento de oxigenoterapia

Dada la falta de eficacia y potenciales toxicidades de las terapias antivirales disponibles en nuestro país, las estrategias farmacológicas en pacientes con infección por SARS-CoV-2 están basadas en soporte y terapia coadyuvante: anticoagulación y corticosteroides, en casos seleccionados.

Corticosteroides

La racionalidad de su uso se basaría en un efecto inmunomodulador, atenuando la elevación masiva de citoquinas inflamatorias observada en los pacientes con neumonía grave por COVID-19, y de este modo, potencialmente mejorar su desenlace. Sin embargo, los corticosteroides tienen efectos adversos, incluvendo el riesgo de nuevas infecciones. Por esto, en general, su uso no está recomendado en forma rutinaria en el tratamiento de neumonías virales en fases tempranas, ya que podría aumentar la replicación viral y disminuir su clearance. En este sentido, y hasta hace muy poco, se recomendaba considerar su uso sólo en tres situaciones: SDRA grave en pacientes que mantuvieran inflamación clínica y de laboratorio, asociado a compromiso pulmonar importante, en shock séptico grave y en descompensación grave de asma o enfermedad pulmonar obstructiva crónica (EPOC).

Sin embargo, en los últimos meses han aparecido estudios que podrían agregar otras indicaciones³¹.

El estudio RECOVERY³² es un ensayo multicéntrico, aleatorizado, controlado, desarrollado por la Universidad de Oxford. Resultados preliminares de una de sus ramas, recientemente publicados, mostraron que el uso de dexametasona en dosis de 6 mg diarios durante 10 días, por vía oral o intravenosa, se asoció con disminución de la mortalidad a 28 días en pacientes hospitalizados con COVID-19 que requerían oxígeno o VMI ([RR], 0.83; 95% CI, 0.74-0.92; p < 0.001). En pacientes sin requerimientos de oxígeno, el uso de dexametasona no sólo no mostró reducción de la mortalidad, sino que incluso podría ser perjudicial, aunque esta observación no alcanzó significancia estadística (RR, 1,22; 95% CI, 0.93-1.61; p = 0.14).

Recientemente, se ha publicado un meta-análisis que recopila datos de siete estudios aleatorizados³³, demostrando que el uso de corticosteroides disminuye la mortalidad a 28 días con un OR 0,7 IC [0,48-1,1]. En el análisis por subgrupo o tipo de corticosteroides, se observa que los datos son favorables, tanto para dexametasona como hidrocortisona, con un OR 0,64 y 0,69, respectivamente. Sin embargo, el uso de metilprednisolona estuvo asociado a un menor efecto con un OR de 0,91. Los datos publicados no consideraron el estudio MetCovid34, un estudio

aleatorizado, doble ciego placebo-controlado, que incluyó 647 pacientes, utilizando 0,5 mg/kg de metilprednisolona 2 veces al día durante 5 días en pacientes hospitalizados con sospecha/confirmación de COVID-19, donde no se observó una reducción en la mortalidad a 28 días. No obstante, en los datos suplementarios del meta-análisis, se realizó esta consideración, y se reajustó el OR a 0,8 IC95% [0.-1,63] p = 0,5, sin perjudicar los datos finales publicados, más sólo reduciendo la inconsistencia.

Dado que no existe otro medicamento que haya mostrado beneficios relacionados a la sobrevida de los pacientes con COVID-19, que es un medicamento de bajo precio, altamente disponible, y que las dosis probadas son relativamente bajas, se sugiere el uso de dexametasona 6 mg/día en pacientes hospitalizados con COVID-19 que requieran oxígeno o se encuentren en VMI, v en quienes se haya descartado sobreinfección y/o trombo-embolismo pulmonar (TEP) como causa de estos requerimientos. No se recomienda el uso de corticosteroides en aquellos pacientes sin insuficiencia respiratoria.

Equivalencia de dosis glucocorticoides:

- Hidrocortisona 150 mg al día, administrado en 3 dosis.
- Metilprednisolona 30 mg al día, administrado en 1 o 2 dosis.

En concordancia a nuestras recomendaciones, la OMS sugiere el uso de corticosteroides en pacientes con enfermedad grave, con un fuerte nivel de recomendación, pero no así en pacientes con enfermedad no grave, principalmente debido al bajo nivel de certeza de los estudios disponibles³⁵.

Anticoagulación

Diferentes reportes y estudios clínicos de China, Europa y más tarde Estados Unidos de América, han mostrado una importante incidencia de complicaciones trombóticas y trombo-embólicas, principalmente venosas, pero también arteriales, en pacientes con COVID-19³⁶⁻³⁸. Estas complicaciones reflejarían un estado protrombótico, producto de injuria o disfunción endotelial producida por el SARS-CoV-2, que se manifiesta en el laboratorio con aumento importante de DD, fibrinolisis, y disminución del recuento de plaquetas, y en la clínica con microtrombosis de pequeños vasos, embolia pulmonar, y trombosis venosas en extremidades, entre otras³⁹. Estas complicaciones parecen, a su vez, ser más frecuentes en los pacientes más graves y se asocian a peores desenlaces.

Estos hallazgos enfatizan la importancia de la profilaxis anticoagulante en pacientes con COVID-19. En un estudio en pacientes en ventilación mecánica⁴⁰, la administración de profilaxis anticoagulante se asoció con menor mortalidad hospitalaria en comparación con pacientes que no la recibieron (29,1 y 62,7%, respectivamente).

Sin embargo, cuando se consideran todos los pacientes hospitalizados, incluidos aquéllos que no requirieron ventilación mecánica, no se encontró diferencia en la mortalidad intrahospitalaria. Otro estudio retrospectivo de 499 pacientes con COVID-19 grave⁴¹, mostró una diferencia significativa en la mortalidad de pacientes con DD elevado (> 6 veces valor normal) que recibieron heparina de bajo peso molecular (HBPM) en comparación con aquéllos que no la recibieron (32,8 y 52,4%, respectivamente).

En este contexto, la *International Society of Thrombosis and Haemostasis* (ISTH)⁴² ha propuesto una categorización que identificaría pacientes con una "coagulopatía inducida por sepsis" (SIC). Los pacientes con puntaje SIC \geq 4, o con DD notablemente elevado, se beneficiarían de tratamiento anticoagulante. Sin embargo, no existe evidencia suficiente para respaldar un tratamiento anticoagulante basado sólo en este puntaje o en un valor umbral de DD, el que no está uniformemente establecido.

- Profilaxis anticoagulante farmacológica en TODO paciente hospitalizado con COVID-19 que no tenga contraindicación formal para su uso. Si existe contraindicación, debe implementarse profilaxis mecánica mediante compresión neumática intermitente.
- Utilizar heparinas de bajo peso molecular (HBPM) en pacientes con aclaramiento de creatinina estimado ≥ 30 ml/min, mientras que en aquéllos con aclaramiento de creatinina estimado < 30 mL/min, se recomienda profilaxis anticoagulante con heparina convencional. También se recomienda heparina no fraccionada (HNF) en pacientes con peso > 150 kg o IMC mayor a 40.
- Dosis estándares: enoxaparina 40 mg/día sc, dalteparina 5.000 U/día sc o HNF 5.000 UI c/8 h sbc.
- Medir DD al ingreso y en forma seriada para estratificar el riesgo potencial y considerar la toma de imágenes.
 - a. En pacientes con DD < 1.000 μg/L al ingreso y sin aumento significativo en seguimiento, debe mantenerse profilaxis con HBPM.
 - b. En pacientes con DD < 1.000 μg/L al ingreso, pero que aumenta significativamente durante la hospitalización (> 2.000-4.000 μg/L), considerar imágenes en busca de trombosis venosa profunda (TVP) y/o TEP, especialmente si hay deterioro clínico o aparecen signos sugerentes de congestión venosa o hipercoagulabilidad.
 - c. En pacientes con DD elevado al ingreso (2.000-4.000 μg/L), se recomienda repetir a diario y considerar imágenes para detectar o descartar TVP y/o TEP.
- Actualmente, no existe evidencia que apoye el uso de dosis mayores de tromboprofilaxis, en pacientes con COVID-19. Por lo tanto, se sugiere una evaluación individualizada, teniendo en consideración el riesgo de trombosis y sangrado de cada paciente. Algunos

652

- factores a considerar son: PaFi < 300 mmHg, puntaje $SIC \ge 4$, DD elevado y alto requerimiento de oxígeno.
- En pacientes con riesgo intermedio-alto, considerar dosis de enoxaparina 0,5 mg/kg c/12 h o dosis equivalentes de dalteparina subcutánea.
- Mantener un nivel alto de sospecha de complicación tromboembólica, y realizar pruebas diagnósticas adecuadas (AngioTC de tórax) frente a signos de descompensación del paciente, tales como: deterioro repentino de la oxigenación, disminución súbita de la presión arterial, taquicardia de inicio súbito y persistente sin etiología clara, hemoptisis, sobrecarga ventricular derecha, cambios en el ECG sugerentes de TEP, o síntomas/signos de TVP tales como aumento de volumen, temperatura y/o coloración de extremidades, etc.
- Si bien el uso de dosis terapéuticas de anticoagulación como prevención primaria no está recomendada, considere el inicio de anticoagulación en pacientes con alta sospecha clínica de complicación tromboembólica (taquicardia o deterioro gasométrico sin causa aparente), en quienes su nivel de inestabilidad impida realizar diagnóstico por imágenes.
- En caso de tener disponible, considere monitorizar la anticoagulación con niveles de anti-Xa, en pacientes con pesos extremos (< 50 kg o > de 100 kg), y/o disfunción renal aguda que no contraindique el uso de HBPM. La toma de muestra para factor anti-Xa se debe realizar 4 a 6 h posteriores a la administración de la HPBM y el valor objetivo para anticoagulación es de 0,5-1 U/ml para dosificación cada 12 h y 1-1,5 U/ml para dosificación cada 24 h. Los valores para tromboprofilaxis son 0,1-0,25 U/ml.
- No hay estudios que evalúen la tromboprofilaxis extendida en pacientes con COVID-19. Sin embargo, dada la elevada incidencia de trombosis, frecuente necesidad de UCI, intubación, sedación y ventilación prolongadas, lo que implica des-acondicionamiento y movilidad reducida al alta, se recomienda considerar tromboprofilaxis extendida en pacientes con bajo riesgo de sangrado y factores de riesgo, tanto basales como asociados a la neumonía por SARS-CoV-2 (edad avanzada, cáncer, trombo-embolismo venoso previa, trombofilia, inmovilidad extrema, DD > 2 veces el valor normal; estadía en UCI, VMI), de acuerdo a algún score como el IMPROVE Bleed (IMPROVE score mayor o igual a 4 puntos) (Tabla 3). En este caso, se recomienda el uso de HBPM o anticoagulante de acción directa (DOACs) por un período mínimo de 2 semanas y hasta por 6 semanas en las siguientes dosis:
 - Rivaroxabán en dosis de 10 mg al día.
 - Enoxaparina en dosis de 40 mg al día.

Este tratamiento dependerá de la presencia de factores pro-trombóticos persistentes, debe decidirse caso a caso, y bajo control médico estricto (Tabla 4).

Tratamiento farmacológico específico

Medicamentos con acción antiviral

Remdesivir

Es un análogo de nucleótido en investigación con un espectro antiviral amplio. In vitro inhibe todos los coronavirus animales y humanos, incluyendo SARS-CoV-2, y en animales tiene actividad in vivo contra patógenos como MERS-CoV y SARS-CoV-1. Remdesivir recibió la autorización de uso de emergencia por la FDA en mayo 2020, basado en la información de dos ensayos clínicos aleatorizados que compararon el uso de remdesivir por 10 días versus placebo (Wang y cols.⁴⁷, y ACTT-1⁴⁸). El primer estudio, no demostró beneficio, reclutando sólo a 237 pacientes de la población estimada en su diseño, siendo un estudio de poca potencia⁴⁷. El segundo estudio⁴⁸ asignó al azar a 1.063 pacientes y encontró que aquellos que recibieron 10 días de remdesivir tuvieron un tiempo de recuperación 4 días más corto, 11 días para remdesivir vs 15 días en comparación al placebo, sin demostrar beneficios en mortalidad a 14 días. Los datos finales de mortalidad a 29 días fueron publicados en octubre del 2020 estimándose una mortalidad de 11,4 vs 15,2% para remdesivir versus placebo, respectivamente, con un hazard ratio 0,73 (IC 95% 0,52-1,03). Un tercer ensayo clínico aleatorizado (ECA), doble ciego, publicado recientemente por Spinner y cols.49, reclutó a 584 pacientes que fueron aleatorizados 1:1:1 a remdesivir por 10 días (n = 193) o 5 días (n = 191) o un grupo control con atención estándar (n= 200). El criterio de valoración primario original fue la proporción de pacientes dados de alta al día 14, pero el criterio de valoración se cambió al inicio del estudio a una escala ordinal de 7 puntos de estado clínico (rango: muerte = 1 a alta = 7) evaluados el día 11 del estudio. Los outcomes secundarios incluyeron el tiempo hasta la recuperación, el tiempo hasta la mejoría clínica, la duración de la estancia hospitalaria, los eventos adversos y la mortalidad. El estudio de Spinner y cols., informó beneficio con un tratamiento de 5 días, pero, al igual que el estudio de Wang y cols., no informó beneficio alguno con la rama de 10 días que había demostrado ser beneficioso en ACTT-1. Por lo tanto, existen tres ECA en pacientes hospitalizados con diferentes resultados, lo que plantea un cuestionamiento respecto a si estas discrepancias son resultado del diseño de los estudios, incluidas las poblaciones de pacientes, o si en realidad, el fármaco es menos eficaz de lo esperado.

Es plausible que la terapia antiviral sea más eficaz si se inicia precozmente y, por lo tanto, su uso en pacientes con enfermedad moderada es un enfoque razonable. Sin embargo, la gravedad y la duración no son sinónimos: tanto en el estudio de Spinner y cols., como en el ACTT-1, los pacientes informaron una mediana de 9 días de síntomas antes del reclutamiento. El uso de un enfoque de escala

Tabla 3. Criterios Neumonía grave IDSA/ATS

Criterios mayores

- · Insuficiencia respiratoria con necesidad de ventilación mecánica
- Shock séptico con necesidad de vasopresores

Criterios menores

- Frecuencia respiratoria ≥ 30 respiraciones/min
- PaO₂/FIO₂ ≤ 250
- Infiltrado multilobar
- Confusión/desorientación
- Uremia ≥ 20 mg/dl
- Leucopenia ≤ 4.000 células/µl
- Trombocitopenia (recuento de plaquetas < 100.000/μl)
- Hipotermia
- · Hipotensión que requiera resucitación con fluidos enérgica

Neumonía grave: 1 criterio mayor o 3 o más criterios menores

tromboembolismo venoso	
Tromboembolismo venoso previo	3
Trombofilia conocida	2
Parálisis extremidades inferiores	2
Cáncer activo	2
Inmovilización > a 7 días	1
Estadía en UCI	1
Edad > 60 años	1
Nivel de riesgo: Score de 0 a 1 bajo riesgo Score 2 a 3 moderado riesgo Score ≥ 4 alto riesgo	

ordinal está respaldado por la Organización Mundial de la Salud y es común en los ECA de COVID-19. Sin embargo, esta escala es un outcome recién creado y aún en validación. Por otra parte, aunque algunos pacientes en los diferentes estudios recibieron corticosteroides. no hubo una aleatorización cruzada formal. Spinner y cols. entregan información sobre la potencial eficacia de remdesivir en pacientes con COVID-19 moderado y sugieren un beneficio clínico modesto con un tratamiento de 5 días en comparación con el cuidado estándar, aunque, la importancia clínica de este hallazgo es incierta. Es necesario considerar que el perfil de efectos adversos en los ECA ha llevado a un alto porcentaje de interrupciones de tratamiento (12%)⁴⁷, y eventos adversos graves grado 3 o 4 en 21 a 28% en la rama de remdesivir^{47,48}. Tanto la población objetivo, la duración óptima del tratamiento, como el efecto sobre los resultados clínicos modestos aún no quedan claros. Por último, es importante disponer de nuevos ECA que valoren el efecto relativo de remdesivir cuando se administra en presencia de dexametasona u otros corticosteroides (Tabla 5).

Rev Chilena Infectol 2020; 37 (6): 646-666 www.revinf.cl

tilación mecánica invasiva.

654

Resumen evidenci	a <i>in vitro</i> o previ	ia para el	uso de remd	esivir				
Autor	País	Tipo		Comentarios				
Wang y cols. ⁵⁰	China	Activ	idad <i>in-vitro</i>	Potente actividad contra SARS-CoV-2 con una CE $_{ extstyle 50}$ a 48 h de 0,77 μ M en células Verc				las Vero E6
Sheahan y cols. ⁵¹	E.U.A.	Mod	elos animales	Modelos animales i Mejor resultado cor		MERS-CoV. Títulos	virales en pulmón y <i>sco</i>	<i>r</i> e de lesión pulmona
Midgley y cols. ⁵²	E.U.A.	Repo	rtes de casos		-	o con COVID-19 lo n clara con el medic	recibieron como uso co amento	mpasivo con evolució
Humeniuk y cols. ⁵³	Miami, E.U.A.	Volu	ntarios sanos	-	la CE ₅₀ in vitro	contra el aislado clí	rifosfato activo (aproxir nico de SARS-CoV-2) de 0 min o 2 h	
CE: concentración e	fectiva							
Estudio	País/Hospital	Diseño	# pacientes	Intervención	Control	Outcome	Resultado	Valor p o RR o dife
Goldman y cols. ⁵⁴	Multicéntrico	ECA, abierto	397	Remdesivir 5 días (n = 200)	Remdesivir 10 días (n = 197)	Estado clínico día 14	Sin diferencia con curso de 5 o 10 días de remdesivir	p = 0,14
						Mejoría clínica (mediana en días)	5d: 10 vs 10d: 11	Diferencia: 0,79 (IC95% 0,61-1,01)
Wang y cols. ⁴⁷	China	ECA, doble ciego	237	Remdesivir 200 mg día 1, luego 100 mg/ día por 9 días (n = 158)	Placebo (n = 79)	Tiempo mejoría clínica (días)	21 (13-28) RDS vs placebo 23 (15-28)	HR 1,23 (IC95%: 0,87-1,75)
Beigel y cols. ⁴⁸	Multicéntrico	ECA, doble ciego	1.062	Remdesivir 200 mg día 1, luego 100 mg/ día por 9 días	Placebo (n = 521)	Tiempo de recu- peración	11 días (IC95% 9-12) RDS vs 15 (IC95% 13-19) Placebo	HR 1,.32 (IC95%: 1,12-1,55) p < 0,001
				(n = 541)		Mortalidad 14 días	7,1% RDS vs 11,9% placebo	HR 0,7 (IC95%: 0,47-1,04)
						Eventos adversos	21.1% RDS vs 27% placebo	N/D
Grein y cols.⁵⁵	Multicéntrico	Cohorte	53	Remdesivir 200 mg día 1, luego 100 mg/	Sin grupo control	Mejoría clínica (nº pacientes)	36/53 pacientes (68%)	Sin cálculos esta- dísticos
	día por 9 días (n = 53)		Mortalidad 14 días	VMI 18%, No-VMI 5%				
Spinner y cols. ⁴⁹	Multicéntrico	ECA, abierto	584	Remdesivir 200 mg día 1, luego 100 mg por 4 días (n = 191)	Cuidado estándar (n = 200)	Mejoría clínica al día 11	5-días vs cuidado estándar	OR 1,65 (1,09-2,48 p = 0,02
				Remdesivir 200 mg día 1, luego 100 mg			10-días vs cuidado estándar	p = 0,018
				por 9 días (n = 193)		Efecto adverso	5-días 51% vs 10- días 59% vs 47% cuidado estándar	N/A

Conclusión: Dada la evidencia actual disponible, se recomienda evaluar individualmente el potencial beneficio del uso de remdesivir -una vez se encuentre disponible- en pacientes con enfermedad grave o moderada, considerando, además, el eventual costo-beneficio de dicha intervención.

Favipiravir

Es un fármaco antiviral de administración oral, inhibidor in vitro de la ARN polimerasa de algunos virus ARN (influenza, hantavirus, norovirus y coronavirus⁵⁶, aprobado en Japón el año 2014 para uso en influenza resistente a otros antivirales y actualmente ha sido autorizado por Rusia y otros países en pacientes COVID-19, debido a información de su actividad in vitro e in vivo.

Dentro de la información científica disponible destaca un estudio aleatorizado efectuado en China en 29 pacientes COVID-19⁵⁷, el que no mostró beneficios en la reducción de la carga viral o en el tiempo desde la randomización a la mejoría clínica, comparado con baloxavir y contra tratamiento usual. Otro estudio aleatorizado en pacientes con neumonía por COVID-19 (n = 236)⁵⁸, logró mayor mejoría clínica a los 7 días que umifenovir (Arbidol) y hubo menor tiempo en resolución de tos y fiebre, aunque sólo en el subgrupo de neumonía moderada. En este estudio destacó un perfil de seguridad con elevación de enzimas hepáticas, síntomas psiquiátricos y afectación gastrointestinal igual en ambos grupos, mientras que en el grupo de favipiravir hubo elevación de ácido úrico de forma más frecuente. Datos preliminares de un estudio aleatorio ruso que probó dos esquemas de dosificación de favipiravir contra tratamiento usual⁵⁹, mostró una mayor proporción de aclaramiento viral al 5º y 10° día, en comparación al tratamiento usual (aunque sólo significativo para el 5° día), y una mediana de normalización de temperatura alta menor para el antiviral.

Existe discusión de si las dosis utilizadas en los estudios podrían ser insuficientes para lograr los objetivos farmacodinámicos en pacientes críticos⁶⁰, proponiendo esquemas con dosis más altas a partir de modelaciones farmacocinéticas, aún sin evaluación⁶¹.

Además, por tratarse de un medicamento aún sometido a estudios clínicos en esta nueva indicación, recién se está conociendo su perfil de seguridad, y su capacidad de interactuar con otros medicamentos. También se ha observado elevación del ácido úrico y prolongación de OT^{58,6}) y ya han reportado 2 casos de síndrome neuroléptico maligno⁶³ (Tabla 6).

Estudio (Link)	Lugar	Intervención	Control	Outcome	Resultado	Valor p o RF
Lou y cols. ⁵⁷	China Pacientes hospitalizados	1.600 o 2.200 mg/ dosis cada 12 h día 1,	Baloxavir + tratamiento usual	Porcentaje con carga viral (–) día 14	FVP 70% vs BAL 77% vs control 100%	-
	ECA Tratamiento usual: lopinavir/ritonavir o	seguido por 600 mg/ dosis cada 8 h hasta como máximo 14 d +	(n = 10) vs tratamiento usual (n = 9)	Tiempo desde la randomización a la mejoría (días)	FVP 14 vs BAL 14 vs control 15	-
	darunavir/cobicistat, arbidol e interferón	tratamiento usual (n = 9)	(11 – 9)	Seguridad	↑ Triglicéridos, hepato- toxicidad, <i>rash</i> , diarrea (igual en todos)	-
Chen y cols. ⁵⁸	China, ECA	1.600 mg/dosis cada 12 h día 1, seguido	UMI + tratamiento usual	Recuperación clínica al 7° día (todos los pacientes)	FVP 61,2% vs UMI 51,6%	p = 0,1396
		por 600 mg/dosis cada 12 h día 7- 10 d + tratamiento usual (n = 116)	(n = 120)	Recuperación clínica al 7º día (no UCI- neumonía moderada)	FVP 71,4% vs UMI 55,9%	p = 0,0199
Ivashchenko y cols. ⁵⁹	Rusia, ECA (Preliminar)	1.600 mg/dosis cada 12 h día 1, seguido por 600 mg/dosis cada 12 h día 2- 14 d (n = 20) + 1800 mg/ dosis cada 12 h día 1, seguido por 800 mg/ dosis cada 12 h día 2-	Tratamiento usual (n = 20)	Aclaramiento viral al día 5	FVP 62,5% vs control 30%	p = 0,018
				Aclaramiento viral al día 10 (<i>outcome</i> principal)	FVP 92,5% vs control 80%	p = 0,155
				Mediana de normalización de temperatura (< 37°C), días	FVP 2 días vs control 4 días	p = 0,007
		14 d tratamiento usual $(n = 20)$ Total 40 pacientes		Mejoría de imágenes al día 15	FVP 90% vs control 80%	p = 0,283

Rev Chilena Infectol 2020; 37 (6): 646-666 www.revinf.cl Conclusión: Por lo tanto, la evidencia actual, con pocos estudios publicados y bajo número de pacientes, no permite definir el valor de favipiravir en el tratamiento de pacientes con COVID-19, y no se recomienda por ahora su uso de rutina. Buena parte de los estudios están en desarrollo, pre publicación o corresponden a informes preliminares.

Hidroxicloroquina

Ha sido usada desde hace años como antimalárico y como antiinflamatorio en enfermedades autoinmunes, como lupus eritematoso diseminado y artritis reumatoidea. También es conocida su acción antiviral bloqueando la entrada de muchos virus a la célula, elevando el pH del endosoma, previniendo la fusión y evitando la replicación viral^{64,65}.

Durante los primeros meses de la pandemia se evaluó el efecto de hidroxicloroquina mediante estudios observacionales y algunos ensayos clínicos aleatorizados de poco tamaño muestral⁶⁶⁻⁶⁸. Los outcomes fueron diversos, incluyendo mortalidad, progresión a ventilación mecánica, cambios radiológicos, cura virológica, estadía hospitalaria, entre otros. Muchos de estos trabajos, por todas las limitaciones metodológicas impuestas por sus diseños, no permitían establecer beneficio ni riesgo de esta intervención terapéutica, tanto en pacientes hospitalizados como en ambulatorios. Durante julio 2020 han aparecido los resultados de nuevos ensayos clínicos aleatorizados, todos con un tamaño muestral alto. Uno de ellos muestra que hidroxicloroquina como profilaxis post-exposición es igual a placebo en la prevención de la enfermedad⁶⁹. Otro muestra que, en pacientes ambulatorios con síntomas leves, y duración de síntomas menor a 5 días, no es distinto al placebo en efecto sobre la carga viral, hospitalización o duración de los síntomas⁷⁰. En el contexto de pacientes hospitalizados y terapias contra SARS-CoV-2 uno de los estudios más importantes ha sido RECOVERY (Randomised Evaluation of COVid-19 the ERapy) que, entre varios medicamentos, evaluó hidroxicloroquina contra los cuidados estándar en mortalidad y tiempo de estadía hospitalaria, no encontrando diferencias para estos importantes *outcomes*⁷¹.

En la Tabla 7 se muestran los principales estudios existentes a la fecha:

Conclusión: Dada la evidencia actual, hidroxicloroquina NO debe ser usada como tratamiento ni prevención de la enfermedad producida por coronavirus SARS-CoV-2.

Combinación hidroxicloroquina y azitromicina

656

Con respecto al uso combinado de estos dos fármacos, estudios iniciales mostraban nulo efecto de esta asocia-

ción^{67,78-81} y en julio 2020 se publicó en la revista New England Journal of Medicine un ensayo clínico aleatorizado que ratificó este hallazgo⁸² (Tabla 8).

Adicionalmente, existen potenciales riesgos electrocardiográficos de la asociación, que han sido revisado por distintos grupos y que demuestran más riesgos que beneficios con esta asociación⁶⁸.

Conclusión: Dada la evidencia actual, la combinación de hidroxicloroquina más azitromicina NO debe ser usada como tratamiento ni prevención de la enfermedad producida por coronavirus SARS-CoV-2.

Lopinavir/ritonavir

Los inhibidores de proteasa inhiben la replicación viral al actuar a nivel de la proteinasa mayor del coronavirus. Ensayos en animales y humanos han demostrado su efectividad en SARS-CoV-1 y MERS-CoV^{83,84}.

En un estudio aleatorizado en pacientes con neumonía grave por SARS-CoV-2 publicado en el New England Journal of Medicie, el uso de lopinavir/ritonavir asociado a tratamiento de soporte, no se asoció a mejoría clínica o a disminución de mortalidad en pacientes gravemente enfermos⁸⁵. Posteriormente, el estudio RECOVERY replicó estos hallazgos⁸⁶ (Tabla 9).

Conclusión: Dada la evidencia actual, lopinavir/ritonavir NO debe ser usada como tratamiento ni prevención de la enfermedad producida por coronavirus SARS-CoV-2.

Interferón

Sin evidencia actual de efectividad en pacientes con COVID-19²⁴.

Ivermectina

Antiparasitario con potente actividad in vitro contra SARS-CoV-287, aunque se ha estimado farmacocinéticamente que las concentraciones necesarias para esta actividad implican dosis excesivamente altas en humanos88. Un estudio no aleatorizado89 comparó la adición de ivermectina a hidroxicloroquina y azitromicina versus HCQ/AZT, mostró una menor longitud de hospitalización en el grupo con ivermectina (7,62 versus 13,22 días; p < 0,001). En otro estudio observacional de 173 pacientes hospitalizados con ivermectina y 107 controles (Estudio ICON: Ivermectin in COvid Nineteen)90 se observó una mortalidad significativamente más baja en el grupo con el antiparasitario (25% versus 15,0%, respectivamente OR 0,52, 95% CI 0,29-0,96), asociación que se mantuvo ajustando por algunas co-variables, siendo más alto su efecto en pacientes ventilados o con mayor necesidad

Estudio (Link)	Lugar	Intervención	Control	Outcome	Resultado	Valor p o RR
Chen y cols.72	China	HCQ 400 mg/día x 5 días +	Cuidado	Días de fiebre	HCQ 2,2 vs 3,2 control	0,0008
	Hospital of Wuhan	cuidado estándar	estándar	Días de tos	HCQ 2,0 vs 3,1 control	0,0016
	University Pacientes hospitalizados	(n = 31)	(n = 31)	Cambios radiológicos día 0-6 (absorción neumonía)	HCQ 80,6% vs 54,8% control	N/D
				Progresión de la enfermedad	HCQ 0% vs 12,9 control	N/D
Chen y cols. ⁷³	China Shanghai Public Health	HCQ 400 mg/día x 5 días + cuidado estándar	Cuidado estándar	Cura virológica día 7	HCQ 86,7% vs 93,3 control	p > 0,05
	Clinical Center Pacientes hospitalizados	(n = 15)	(n = 15)	Eventos adversos (diarrea)	HCQ 26,7% vs 20% control	p > 0,05
				Progresión radiológica	HCQ 33,3% vs 46,7% control	N/D
Tang y cols. ⁷⁴	China	HCQ 1.200 mg/día por 3	Cuidado	Cura virológica día 28	HCQ 85,4 % vs 81,3%	NS
	Multicéntrico Pacientes hospitalizados	días, luego 800 mg/día (duración total 2 o 3 se-	estándar (n = 75)	Mejoría de síntomas día 28	HCQ 59,9% vs 66,6% control	NS
		manas según severidad) + cuidado estándar (n = 75)		Eventos adversos	HCQ 30% vs 8,8% control	0,001
Skipper y cols. ⁷⁵	E.U.A./Canadá Multicéntrico Pacientes sintomáticos	HCQ 800 mg/día x 1 vez, luego 600 mg a las 6-8 h y luego 600 mg/día x 4	Placebo (n = 211)	Cambios en una escala visual de síntomas (1-10) 14 días	Diferencia -0,27 puntos (IC95%, -0,61 a 0,07 puntos)	p = 0,117
	confirmados adultos ambulatorios	d más (n = 212)		Síntomas al día 14	HCQ 24% (49/201) vs 30% (59/194) placebo	p = 0,21
				Eventos adversos	HCQ 43% vs 22% placebo	p < 0,001
Mitjà y cols. ⁷⁰	España Multicéntrico Pacientes ambulatorios	HCQ 800 mg/día x 1 vez, luego 400 mg/día x 6 d + cuidado estándar	Cuidado estándar (n = 157)	Reducción de carga viral a 7 días (Log10 copias/mL)	HCQ -3,44 vs control -3,37	Diferencia: -0,0 [IC95%: -0,44 0,29]
	confirmados recientemente (< 5 días síntomas)	(n = 136)		Riesgo de hospitalización	HCQ 5,9% vs 7,1% control	RR 0,75 [IC95% 0,32; 1,77]
Boulware y cols. ⁶⁹	E.U.A./Canadá Multicéntrico Prevención Adultos con exposición ocupacional o domiciliaria a caso	Dentro de 4 días post- exposición: 800 mg/dosis, luego 600 en 6 a 8 h y luego 600 mg/día x 4 d (n = 414)	Dentro de 4 días post- exposición Placebo (n = 407)	Nueva enfermedad	HCQ 11,8% vs 14,3% placebo	Diferencia: -2, (IC95% -7-2,2
Abd-Elsalam y cols. ⁷⁶	Egipto Tres centros	HCQ 400 mg q 12 h día 1, luego 200 mg cada 12 x	Cuidado estándar	Mortalidad	HCQ 6/97 vs 5/97 control	p = 0,77
		15 d + cuidado estándar (n= 97)	(n = 197)	Progresión a ventilación mecánica	HCQ 4/97 vs 5/97 control	p = 0,75
Kamran y cols. ⁷⁷	Pakistán Un solo centro	HCQ 400 mg q 12 h día 1, luego 200 mg cada 12 x	Cuidado estándar	Progresión de enfermedad	HCQ 3,2% vs 3,4% control	p =0,865
		4 d + cuidado estándar (n = 349)	(n = 151)	Negatividad de RPC día 14	HCQ 69,9% vs 72,8% control	p = 0,508
RECOVERY ⁷¹	Reino Unido	HCQ 800 mg/dosis a hora 0 y 6, 12 h después 400	Cuidados estándar	Mortalidad a 28 días	HCQ 26,8% vs 25% control	RR 1,09 (IC95% 0,96-1,2
		mg cada 12 h por 9 días más o hasta el alta + cuidado estándar (n = 1.542)	(n = 3.132)	Alta hospitalaria a los 28 días	HCQ 60,3% vs 62,8% control	RR 0,92 (IC95% 0,85-0,9

Rev Chilena Infectol 2020; 37 (6): 646-666 www.revinft.cl **657**

Estudio (Link)	País/Hospital	Intervención	Control	Outcome	Resultado
Cavalcanti y cols.82	Brasil Adultos hospitalizados	1. CE + HCQ 400 mg q 12 h vo x 7d (n = 221)	Cuidados estándar (n = 227)	Empeoramiento en una escala visual de síntomas (1-7) a 15 días	HCQ vs CE: OR 1,21 (IC95% 0,69-2,11) HCQ+ AZT vs CE: OR 0,99 (IC95% 0,57-1,73) HCQ+ AZT vs AZT: OR 0,82 (IC95% 0,47-1,43
Leve-moderado	Leve-moderado	rado 2. CE + HCQ 400 mg q 12 h + AZT 500 mg/ día vo x 7d (n = 217)		Duración de la hospitalización (días)	HCQ+ AZT 10,3 vs HCQ 9,6 vs CE 9,5†
					Uso de ventilación mecánica (%)
		, ,		Muerte intrahospitalaria	HCQ +AZT 2,9% vs HCQ 4,4% vs CE 3,5% [†]

Estudio (Link)	País/Hospital	# pacientes	Intervención	Control	Outcome	Resultado	Valor p o RR o Dif porcentual
Cao y cols. ⁸⁵	China Jin Yin-Tan Hospital,	n = 199	Lopinavir-ritonavir (LPV/r)(400/100 mg) cada 12 h por 14	Cuidado estándar (n = 100)	Tiempo para la recuperación clínica	Mediana LPV/r 16 d (13 a 17) vs control 16 d (15 a 18)	Hazard ratio: 1,24 (IC95% :0,90 a 1,72)
	Wuhan, Hubei Province	iviorialidad		Mortalidad	LPV/r 19,2% vs cuidado estándar 25,0%	Diferencia %: -5,8 %; (IC95%: -17,3 a 5,7)	
					Seguridad	Gastrointestinales más frecuentes en LPV/r	N/D
RECOVERY trial ⁸⁶	E.U.A. Multicéntrico	n = 11.800	Lopinavir-ritonavir (LPV/r)(400/100 mg) cada 12 h por 14 días (n = 1.596)	Cuidado estándar (n = 3.376)	Mortalidad a 28 días	22,1% LPV/r vs cuidado estándar 21,3%	RR 1,04 (IC95% 0,91-1,18) p = 0,58

de oxígeno. A pesar de esta evidencia prometedora, los resultados no han sido sometidos a revisión de pares y es necesario contar con más estudios de efectividad y seguridad, sobre todo ECA, para recomendarla como una alternativa válida contra COVID-19.

Conclusión: Por lo tanto, no existe aún evidencia para recomendar su uso.

Inmunoterapia

Tocilizumab

Debido al conocimiento actual de los mecanismos involucrados en la cascada inflamatoria producida por el virus y donde interleuquina-6 (IL-6) circulante podría tener un importante rol^{91,92}, se ha propuesto tocilizumab (un anticuerpo monoclonal IgG1 recombinante humanizado anti receptor de IL-6) como alternativa terapéutica.

Se han publicado varios estudios observacionales que no permiten establecer la eficacia y seguridad de tocilizumab en COVID-1993-95. A la fecha de la construcción de este protocolo, se publicaron resultados preliminares del ensayo clínico aleatorizado COVACTA96 que comparaba tocilizumab a placebo. Tocilizumab no logró demostrar diferencias en la mejoría clínica en pacientes adultos hospitalizados con neumonía grave (p = 0.36; OR = 1.19 IC95% [0,81; 1,76]. Adicionalmente, no hubo diferencias significativas en el número de días sin ventilador (mediana de 22 días vs 16,5 con placebo, p = 0,3202), aunque sí en la duración de la hospitalización y la estadía en UCI, con una reducción de 8 días y 5,7 días, respectivamente. Respecto a seguridad, a 28 días las tasas de infecciones fueron 38,3% para tocilizumab y 40,6% placebo, y las tasas de infecciones graves fueron 21,0% y 25,9%, respectivamente. Actualmente, están en marcha varios ensayos clínicos aleatorizados como REMDACTA que compara tocilizumab + remdesivir versus remdesivir⁹⁷ o MARIPOSA⁹⁸, que estudia dos esquemas de dosificación de tocilizumab, entre otros.

Debido a que COVACTA evaluó los resultados de los

pacientes en un día específico y los criterios de inclusión fueron amplios y parecen no estratificar según signos clínicos de hiperinflamación, el estudio podría haber pasado por alto diferencias clínicamente relevantes entre los grupos de pacientes. En el contexto de una tormenta de citoquinas inducida por COVID-19, el tratamiento anti-IL-6 podría ser más útil en una etapa temprana de la enfermedad: después del inicio de la enfermedad grave pero antes de la insuficiencia respiratoria florida. Tocilizumab continúa en evaluación bajo el estudio RECOVERY con más de 850 pacientes enrolados hasta la fecha, esto representa casi el doble de la población reclutada en COVACTA y proporcionará datos críticos para confirmar o refutar los resultados de COVACTA.

Su uso en pacientes graves con neumonía por SARS-CoV-2 grave debe evaluarse caso a caso. Adicionalmente, debe recordarse que su uso está contraindicado en pacientes con: sobreinfección bacteriana, valores de AST/ALT mayores a 10 veces el límite superior de normalidad, neutrófilos menores a 500 céls/mm³, plaquetas menores a 50.000 céls/mm³.

- Dosis recomendada: 4-8 mg/kg/dosis por 1 vez, si no se observara mejoría (disminución de fiebre y/o PCR, podría repetirse a las 12 h (sin exceder los 800 mg totales) vía endovenosa.
- Diluir en solución salina fisiológica (NaCl 9‰) y administrar en 1 hora (Tabla 10).

Tabla 10. Estudios de tocilizumab

Conclusión: Hasta no tener más información, la evidencia no es suficiente para establecer una recomendación a favor o en contra de tocilizumab.

Inmunoglobulina endovenosa

No recomendada de rutina, excepto hipogamaglobulinemia o síndrome inflamatorio multisistémico.

Dosis estándar 1 g/kg/día por 2 días o 0,3-0,5 g/kg/día por 5 días por vía endovenosa.

Plasma de convalecientes

Su mecanismo de acción sería la transferencia de inmunidad pasiva (anticuerpos), en un esfuerzo por restaurar el sistema inmune durante la enfermedad crítica y la neutralización viral por supresión de la viremia.

Actualmente, la evidencia publicada sobre el uso de plasma convaleciente (PC) en pacientes con infección por SARS-CoV-2 es limitada v con un bajo nivel de evidencia99,100. Si bien, su uso en otras enfermedades infecciosas (influenza y ébola) ha tenido resultados mixtos, tres estudios aleatorizados en influenza grave no demostraron beneficios significativos 101-103.

La FDA tiene regulado el PC como un producto para investigación, sugiriendo como criterios de elegibilidad para estudios clínicos, la enfermedad grave o que ponga en riesgo la vida en forma inmediata. Sin embargo, existe controversia, ya que se ha planteado que su mayor utilidad

Zhang y cols.91	China	Revisión	Las característic	as clínicas analizada	s en estudios r	oublicados muestran que en	n los pacientes con COVII	D-19 el recuen
Zitang y cois.	Cillia	Revision	to de linfocitos : mientras numer	se redujo significativ rosas citoquinas (co	ramente en pac mo IL-6, IL-10,	iientes con neumonía, espe IL-2 y FNT y IFN-γ) se incre pales causas de la torment	cialmente aquellos con r mentaron significativam	neumonía grave
Resumen de esti	udios clínicos ale	eatorizados co	n tocilizumab					
Estudio (Link)	País/Hospital	Diseño	# pacientes	Intervención	Control	Outcome	Resultado	valor p o RF
COVACTA Trial ⁹⁶	OVACTA Trial ⁹⁶ Multicéntrico RTC, fase III	n= 450 TCZ 8 mg/kg, Pl hasta un máximo de 800 mg dosis	Placebo	Mejoría <i>status</i> clínico a 28 días, por una escala de 1 a 7	OR 1,19 (IC95% 0,81-1,7)	p = 0,36		
			800 mg dosis		Mortalidad a 28 días	19,7% TCZ vs place- bo 19,4%	p = 0,941	
						Tiempo hasta el alta hospitalaria	20 días TCZ vs 28 días placebo	p = 0,0370
						Duración en UCI	9,8 días TCZ vs 15,5 días placebo	p = 0,045
						Días sin ventilador	22 días TCZ vs 16,5 días placebo	p = 0,3202
						Tasas de infecciones a 28 días	38,3% TCZ vs 40,6% placebo	N/D
						Tasa de infecciones graves	21,0% TCZ vs 25,9% placebo	N/D

sería en fases más precoces. Esto sería debido a que el mecanismo de acción más aceptado es la reducción de la viremia. Esto ocurre generalmente en forma natural entre los 10 y 14 días de infección, por lo que, en teoría, administrarlo en etapas precoces, cuando aún hay viremia, maximizaría en teoría su eficacia.

Existe un estudio multicéntrico aleatorizado¹⁰⁴, que incluyó 103 pacientes con COVID-19 confirmados, con enfermedad grave o con riesgo vital; 52 pacientes recibieron PC más tratamiento estándar y 51 pacientes sólo tratamiento estándar. Este estudio no mostró una diferencia estadísticamente significativa en el tiempo de mejoría a los 28 días ni en mortalidad. Cabe destacar que este estudio fue terminado tempranamente, debido a la imposibilidad de reclutar más pacientes como consecuencia de la disminución de casos en la zona, y que la mediana de tiempo transcurrido desde el inicio de los síntomas hasta la administración de plasma fue 30 días, siendo la administración en 93% de los casos posterior al día 14 de síntomas.

Recientemente se publicó en Cochrane una revisión sistemática de PC¹⁰⁵, la cual concluye resultados inciertos con respecto a efectividad en mortalidad o mejoría clínica.

Por lo tanto, la evidencia actual es aún de baja calidad y queda pendiente determinar la utilidad del plasma administrado en fases más tempranas.

Con respecto a la seguridad, Joyner y cols. ¹⁰⁶ reportaron 5.000 pacientes con enfermedad grave o con riesgo vital por COVID-19, enrolados en el Expanded Access Program for COVID-19 CP Study de la Food and Drug Administration (FDA) de E.U.A., encontrando menos de 1% de eventos adversos graves durante las primeras 4 h de administración de PC. Se informaron 15 muertes (0,3% de todas las transfusiones) y sólo cuatro de ellas, se consideraron relacionadas. Esto podría indicar que el PC es seguro en el tratamiento de pacientes gravemente enfermos por COVID-19.

Existe una actualización de este estudio, en que se reportan datos de seguridad de 20.000 pacientes sometidos a transfusión de PC (incluidos los 5.000 previos). En este estudio el reporte de eventos adversos serios relacionados a la transfusión de PC continúa siendo menor a 1%.

Conclusión: Por lo tanto, con la evidencia actual no es posible establecer una recomendación a favor o en contra del uso de PC, por falta de estudios que demuestren eficacia. Sin embargo, pareciera ser seguro. Si es usado, idealmente debiera hacerse dentro de un estudio clínico y, eventualmente, dentro de los primeros 7 a 10 días desde el inicio de los síntomas de la enfermedad.

Consideraciones en el escenario de uso de terapias específicas

Frente a la elección de alguna terapia específica, se recomienda fuertemente informar al paciente o familia tanto los potenciales beneficios como riesgos asociados, y obtener el consentimiento para su uso (Tabla 11).

	HCQ +/- azitromicina	LPV/r	Plasma	IL-6	Remdesivir (RDV)	Terapia anti- trombótica	Corticoste- roides
IDSA	No recomendado	Sí, sólo en el contexto de un estudio clínico	Sí, sólo en el contexto de un estudio clínico	No recomendado	Sí, sólo en enfermedad grave* Curso de 5 días de RDV en pacientes con O ₂ suplementario sin VM o ECMO y 10 días para pacientes en VM o ECMO	Sin recomendación	Sí, sólo en enfermedad grave*
NIH	No recomendado en hospitalizados (AI) Ambulatorio, sólo en el contexto de estudio clínico (AI)	Sí, sólo en el contexto de un estudio clínico	Sin información para recomendar a favor o en contra	No recomendado, excepto en el contexto clínico (BI)	 a. Ambulatorio u hospitalizado sin soporte de O₂: sin información para recomendar a favor o en contra b. Hospitalizado con soporte de O₂ sin VM, VMNI, o ECMO: a favor de remdesivir con o sin corticosteroides c. Hospitalizado con soporte de O₂ a través de CNAF o VMNI: a favor de remdesivir con o sin corticosteroides d. Hospitalizado en VM o ECMO:remdesivir + dexametasona 	Sí	Sí, sólo en enfermedad grave*
SOCHINF/SER/ SOCHIMI	No recomendado	No recomendado	Sin información para recomendar a favor o en contra, excepto en el contexto de un estudio clínico	Sin información para recomendar a favor o en contra	Sí, bajo una evaluación individual del potencial costo/beneficio	Sí	Sí, sólo en enfermedad grave*

Autores

Jorge Pérez Godoy

Médico Infectólogo

Hospital Padre Hurtado, Clínica Alemana de Santiago Facultad de medicina Clínica Alemana-Universidad del Desarrollo

jperez@alemana.cl

Ruth Rosales Chacón

QF. Clínico

Hospital Barros Luco ruth.rosales@redsalud.gov.cl

Fernando Bernal Ortiz

OF. Clínico

Hospital San Juan de Dios fernando.bortiz@gmail.com

Cecilia Luengo Messen

Médico Intensivista

Unidad de Pacientes críticos Hospital Clínico Universidad de Chile

celuengomed@gmail.com

José Miguel Arancibia Henríquez

Médico Infectólogo UPC Hospital San Juan de Dios Profesor Instructor Departamento de Medicina Interna, Universidad de Chile jmarancibia77@gmail.com

Daniela Pavez Azurmendi

Pediatra Infectóloga Hospital San Juan de Dios, Clínica Alemana de Santiago Universidad de Chile pavezdanita@gmail.com

Claudio González Muñoz

OF. Clínico

Hospital Exequiel González Cortez claudio.gonzalezm@redsalud.gov.cl

Francisco Arancibia Hernández

Medicina Interna, Enfermedades respiratorias Instituto Nacional del Tórax farancibia@torax.cl

Raúl Riquelme Oyarzún

Medicina Interna, Enfermedades respiratorias Universidad San Sebastián, sede Patagonia, Puerto Montt rauloriquelme@gmail.com

Regina Pérez Pérez

Pediatra Infectóloga

Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, División de Pediatría Pontificia Universidad Católica de Chile rperezp@med.puc.cl

Mirta Acuña Ávila

Pediatra Infectóloga Unidad de Infectología Hospital Roberto del Río Universidad de Chile mirta.i.acuna@gmail.com

Leonardo Chanqueo Cornejo

Médico Infectólogo Hospital San Juan de Dios lchanqueo@gmail.com

Tomás Regueira Heskia

Médico Intensivista Unidad de Pacientes críticos Clínica las Condes tregueira@gmail.com

Luz María Fuenzalida

Médico Microbiólogo Hospital Salvador, Fundación Arturo López Pérez. luzmafuenzalida@yahoo.com

Rubén Hernández Mazurek

OF Clínico

Hospital San Borja Arriarán rthernan@uc.cl

Mariana Arias Lucero

QF clínico

Intensivo cardiovascular Clínica Las Condes mzarias@uc.cl

Paula Impellizzeri Navarro

QF. Clínica

Complejo asistencial Dr. Sótero del Río. Unidad de paciente Crítico pediátrico y docente Universidad Andrés Bello.

pfimpell@uc.cl

Cristian Paredes Kunst

QF clínico Hospital La Florida clparede@uc.cl

María Eugenia Pinto Claude

Microbióloga clínica Hospital Clínico Universidad de Chile mpintoc@hcuch.cl

Anexo 1 Escala CURR-65

El **CURB-65** es una escala de predicción de mortalidad utilizada en pacientes con neumonía adquirida en la comunidad. Está avalada por la *British Thoracic Society*

С	Confusión	+ 1 punto
U	BUN >19mg/dL	+ 1 punto
R	Respiración >30 rpm	+ 1 punto
В	PAS < 90 o PAD < 60 mmHg	+ 1 punto
65	Edad > 65 años	+ 1 punto

Interpretación

0 - 1 punto : Mortalidad de 0,2 a 2,7%; considerar manejo ambulatorio
 2 - 4 puntos : Mortalidad del 6,8 a 27%; considerar hospitalización
 5 puntos : Mortalidad del 57%; considerar ingreso a UCI

Anexo 2. Criterios de neumonía grave IDSA/ATS

Criterios Mayores

- Insuficiencia respiratoria con necesidad de ventilación mecánica
- Shock séptico

Criterios Menores

- Frecuencia respiratoria ≥ 30 respiraciones/minuto
- $PaO_2/FIO_2 \le 250$
- · Infiltrado multilobar
- Confusión/desorientación
- Uremia ≥ 20 mg/dl
- Leucopenia ≤ 4.000 céls/µl
- Trombocitopenia (recuento de plaquetas < 100.000 céls/μl)
- Hipotermia
- Hipotensión arterial que requiera resucitación con fluidos enérgica

Neumonía grave: 1 criterio mayor o 3 o más criterios menores.

Referencias bibliográficas

- 1.- Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395 (10229): 1054-62. doi:https://doi. org/10.1016/S0140-6736(20)30566-3.
- 2.- Shen K, Yang Y, Wang T, Zhao D, Jiang Y, Jin R, et al. Diagnosis, treatment, and prevention of 2019 novel coronavirus infection in children: experts' consensus statement. World J Pediatr [Internet]. 2020; 16 (3): 223-31. Available from: http://link.springer.com/10.1007/s12519-020-00343-7 [citado el 6 de mayo de 2020].
- 3.- World Health Organization. Laboratory testing for coronavirus disease (COVID-19) in suspected human cases [Internet]. 2020. Available from: https://apps.who.int/iris/handle/10665/331329?locale-attribute=es&
- 4.- Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA [Internet]. 2020; 323 (18): 1843-4. Available from: https://jamanetwork.com/journals/jama/fullarticle/2762997 [citado el 6 de mayo de 2020].
- 5.- Asociación Española de Pediatría de Atención Primaria. Pruebas diagnósticas de laboratorio de COVID-19 [Internet]. 2020. Available from: https://www.aepap.org/sites/default/ files/documento/archivos-adjuntos/pruebas_ diagnosticas_de_laboratorio_de_covid_vfinal. pdf [citado el 6 de mayo de 2020].
- 6.- Sociedad Española de Inmunología. Utilidad

- de la determinación de anticuerpos anti SARS-CoV-2 [Internet]. 2020. Available from: https://www.inmunologia.org/Upload/ Documents/1/5/2/1520.pdf [citado el 6 de mayo de 2020].
- Cheng M P, Papenburg J, Desjardins M, Kanjilal S, Quach C, Libman M, et al. Diagnostic testing for Severe Acute Respiratory Syndrome-Related Coronavirus
 Ann Intern Med [Internet]. 2020; 172 (11): 726-34. Available from: https://www.acpjournals.org/doi/10.7326/M20-1301 [citado el 6 de mayo de 2020].
- 8.- Sociedad Chilena de Alergia e Inmunología. Respuesta inmune contra SARS-CoV-2 (COVID-19) y utilidad de las pruebas serológicas [Internet]. 2020. Available from: http://www.colegiomedico.cl/wp-content/ uploads/2020/04/Comunicado-SCAI-COVID-19.-18-abril-2020.pdf [citado el 6 de mayo de 2020].
- Zhao J, Yuan Q, Wang H, Liu W, Liao X, Su Y, et al. Antibody responses to SARS-CoV-2 in patients with novel coronavirus disease 2019. Clin Infect Dis [Internet]. 2020;ciaa344. Available from: https://academic.oup.com/cid/advance-article/doi/10.1093/cid/ciaa344/5812996 [citado el 6 de mayo de 2020].
- 10.- Pan Y, Zhang D, Yang P, Poon L L M, Wang Q. Viral load of SARS-CoV-2 in clinical samples. Lancet Infect Dis [Internet]. 2020; 20 (4): 411-2. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1473309920301134 [citado el 5 de mayo de 2020].
- 11.- World Health Organization. Laboratory

- guidelines for the detection and diagnosis of COVID-19 virus infection [Internet]. 2020. Available from: https://apps.who.int/iris/handle/10665/331329?locale-attribute=es&
- Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z, et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N Engl J Med [Internet]. 2020; 382 (12): 1177-9. Available from: http://www.nejm.org/doi/10.1056/NEJMc2001737 [citado el 5 de mayo de 2020].
- 13.- SEIMC. Recomendaciones institucionales documento de posicionamiento de la SEIMC sobre el diagnóstico microbiólogo de COVID-19. [Internet]. Available from: https://seimc.org/contenidos/documentoscientificos/recomendaciones/seimc-re-2020-Posicionamiento_SEIMC_diagnostico_microbiologico_COVID19.pdf [citado el 5 de septiembre de 2020].
- 14.- SEIMC. Reflexiones de SEIMC sobre el uso de la detección de antígenos y anticuerpos para diagnóstico de COVID-19 [Internet]. Available from: https://seimc.org/contenidos/ noticias/2020/seimc-nt-2020-Reflexiones_ deteccion_Ag_y_AC_COVID-19.pdf [citado el 5 de septiembre de 2020].
- 15.- Patel R, Babady E, Theel E S, Storch G A, Pinsky B A, St. George K, et al. Report from the American Society for Microbiology COVID-19 International Summit, 23 March 2020: Value of Diagnostic Testing for SARS-CoV-2/COVID-19. MBio [Internet]. 2020; 11 (2). Available from: https://mbio.asm. org/content/11/2/e00722-20 [citado el 5 de septiembre de 2020].

Rev Chilena Infectol 2020; 37 (6): 646-666

- 16.- Loeffelholz M J, Tang Y-W. Laboratory diagnosis of emerging human coronavirus infections - the state of the art. Emerg Microbes Infect [Internet], 2020; 9 (1): 747-56. Available from: https://www.tandfonline. com/doi/full/10.1080/22221751.2020.1745095 [citado el 6 de mayo de 2020].
- 17.- Porte L, Legarraga P, Vollrath V, Aguilera X, Munita J M, Araos R, et al. Evaluation of novel antigen-based rapid detection test for the diagnosis of SARS-CoV-2 in respiratory samples. SSRN Electron J [Internet]. 2020; 99: 328-33. Available from: https://www.ssrn. com/abstract=3569871.
- 18.- Diao B, Wen K, Chen J, Liu Y, Yuan Z, Han C, et al. Diagnosis of Acute Respiratory Syndrome Coronavirus 2 Infection by detection of nucleocapsid protein (preprint). medRxiv [Internet]. 2020; 2020.03.07.20032524. Available from: https:// www.medrxiv.org/content/10.1101/2020.03. 07.20032524v2 [citado el 6 de septiembre de
- 19.- Li Z, Yi Y, Luo X, Xiong N, Liu Y, Li S, et al. Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. J Med Virol [Internet]. 2020; 92 (9): 1518-24. Available from: https://onlinelibrary.wiley.com/doi/ abs/10.1002/jmv.25727 [citado el 6 de mayo
- 20.- Sethuraman N, Jeremiah S S, Ryo A. Interpreting diagnostic tests for SARS-CoV-2. JAMA [Internet]. 2020; 323 (22): 2249-51. Available from: https://jamanetwork.com/ journals/jama/fullarticle/2765837 [citado el 15 de mayo de 2020].
- American College of Radiology. ACR Recommendations for the use of chest radiography and computed tomography (CT) for suspected COVID-19 infection [Internet]. Available from: https://www. acr.org/Advocacy-and-Economics/ACR-Position-Statements/Recommendations-for-Chest-Radiography-and-CT-for-Suspected-COVID19-Infection [citado el 6 de mayo de 2020].
- 22.- Metlay J P, Waterer G W, Long A C, Anzueto A, Brozek J, Crothers K, et al. diagnosis and treatment of adults with community-acquired pneumonia. An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America. Am J Respir Crit Care Med [Internet]. 2019; 200 (7): e45-67. Available from: https://www.atsjournals.org/ doi/10.1164/rccm.201908-1581ST [citado el 6 de mayo de 2020].
- 23.- Massachusetts General Hospital. COVID-19 treatment guidance [Internet]. 2020. Available from: https://www.massgeneral.org/assets/ MGH/pdf/news/coronavirus/mass-general-

- COVID-19-treatment-guidance.pdf [citado el 15 de septiembre de 2020].
- 24.- McCreary E K, Pogue J M. Coronavirus disease 2019 Treatment: a review of early and emerging options. Open Forum Infect Dis [Internet]. 2020; 7 (4): ofaa105. Available from: https://academic.oup.com/ofid/article/ doi/10.1093/ofid/ofaa105/5811022 [citado el 6 de mayo de 2020].
- 25.-Alhazzani W. Møller M H. Arabi Y M. Loeb M, Gong M N, Fan E, et al. Surviving sepsis campaign: guidelines on the management of critically ill adults with Coronavirus disease 2019 (COVID-19). Intensive Care Med [Internet]. 2020; 46 (5): 854-87. Available from: http://link.springer.com/10.1007/ s00134-020-06022-5 [citado el 6 de mayo de 2020].
- 26.- MINSAL. Recomendaciones clínicas basadas en evidencia coronavirus/COVID-19. [Internet]. 2020. Available from: https:// diprece.minsal.cl/temas-de-salud/temas-desalud/guias-clinicas-no-ges/guias-clinicasno-ges-enfermedades-transmisibles/covid-19/ recomendaciones/ [citado el 15 de septiembre de 2020].
- National Institutes of Health (NIH). Coronavirus disease 2019 (COVID-19) treatment guidelines [Internet]. Available from: https://www. covid19treatmentguidelines.nih.gov/ [citado el 15 de septiembre de 2020].
- CDC. Management of patients with confirmed 28.-2019-nCoV [Internet]. Available from: https:// www.cdc.gov/coronavirus/2019-ncov/hcp/ clinical-guidance-management-patients.html [citado el 15 de septiembre de 2020].
- Infectious Diseases Society of America. Infectious Diseases Society of America guidelines on the treatment and management of patients with COVID-19 [Internet]. Available from: https://www.idsociety. org/practice-guideline/covid-19-guidelinetreatment-and-management/ [citado el 15 de septiembre de 2020].
- 30.- Bakare L S, Allen J M. COVID-19 Therapeutics: making sense of it all. AACN Adv Crit Care [Internet]. 2020; 31 (3): 239-49. Available from: http://www.ncbi.nlm.nih.gov/ pubmed/32668460 [citado el 15 de septiembre de 2020].
- 31.- Wang Y, Jiang W, He Q, Wang C, Wang B, Zhou P, et al. Early, low-dose and short-term application of corticosteroid treatment in patients with severe COVID-19 pneumonia: single-center experience from Wuhan, China (preprint). medRxiv [Internet]. 2020; Available from: https://doi. org/10.1101/2020.03.06.20032342 [citado el 15 de septiembre de 2020].
- 32.-Horby P, Lim W S, Emberson J, Mafham M, Bell J, Linsell L, et al. Dexamethasone

- for COVID-19-preliminary report effect of dexamethasone in hospitalized patients with COVID-19-preliminary report (preprint). N Engl J Med [Internet]. 2020; Available from: 10.1056/NEJMoa2021436 [citado el 6 de septiembre de 2020].
- 33.-Sterne J A C, Murthy S, Díaz J V, Slutsky A S, Villar J, Angus D C, et al. Association between administration of systemic corticosteroids and mortality among critically ill patients with COVID-19. JAMA [Internet]. 2020; 324 (13): 1330. Available from: https://jamanetwork.com/journals/jama/ fullarticle/2770279 [citado el 15 de septiembre de 2020].
- 34.- Jeronimo C M P, Farías M E L, Val F F A, Sampaio V S, Alexandre M A A, Melo G C, et al. Methylprednisolone as adjunctive therapy for patients hospitalized with coronavirus disease 2019 (COVID-19; Metcovid): a randomized, double-blind, phase IIb, placebocontrolled trial. Clin Infect Dis [Internet]. 2020; Available from: https://academic.oup. com/cid/advance-article/doi/10.1093/cid/ ciaa1177/5891816 [citado el 15 de septiembre de 20201.
- 35.- World Health Organization. Corticosteroids for COVID-19 [Internet]. 2020. Available from: https://www.who.int/publications/i/item/ WHO-2019-nCoV-Corticosteroids-2020.1 [citado el 15 de septiembre de 2020].
- 36.- Klok F A, Kruip M J H A, van der Meer N J M, Arbous M S, Gommers D A M P J, Kant K M, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res 2020; 191: 145-7. doi: 10.1016/j.thromres.2020.04.013.
- 37.- Helms J, Tacquard C, Severac F, Leonard-Lorant I, Ohana M, Delabranche X, et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med [Internet]. 2020; 46 (6): 1089-98. Available from: http://link.springer.com/10.1007/ s00134-020-06062-x [citado el 15 de septiembre de 2020].
- 38.- Lodigiani C, Iapichino G, Carenzo L, Cecconi M, Ferrazzi P, Sebastian T, et al. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb Res [Internet]. 2020; 191: 9-14. Available from: https://linkinghub.elsevier.com/retrieve/pii/ S0049384820301407 [citado el 6 de mayo de 2020].
- 39.- Leisman D E, Deutschman C S, Legrand M. Facing COVID-19 in the ICU: vascular dysfunction, thrombosis, and dysregulated inflammation. Intensive Care Med [Internet]. 2020; Available from: http://link.springer. com/10.1007/s00134-020-06059-6 [citado el 6 de mayo de 2020].

- 40.- Paranjpe I, Fuster V, Lala A, Russak A J, Glicksberg B S, Levin M A, et al. Association of Treatment dose anticoagulation with inhospital survival among hospitalized patients with COVID-19. J Am Coll Cardiol [Internet]. 2020; 76 (1): 122-4. Available from: https:// www.onlinejacc.org/content/76/1/122 [citado el 15 de septiembre de 2020].
- 41.- Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost [Internet]. 2020; 18 (5): 1094-9. Available from: https://onlinelibrary. wiley.com/doi/abs/10.1111/jth.14817 [citado el 6 de mayo de 2020].
- 42.- Thachil J, Tang N, Gando S, Falanga A, Cattaneo M, Levi M, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost 2020; 18 (5): 1023-6. https://doi.org/10.1111/jth.14810.
- 43.- Spyropoulos A C, Levy J H, Ageno W, Connors J M, Hunt B J, Iba T, et al. Scientific and standardization committee communication: clinical guidance on the diagnosis, prevention, and treatment of venous thromboembolism in hospitalized patients with COVID-19. J Thromb Haemost [Internet]. 2020; 18 (8): 1859-65. Available from: https://pubmed.ncbi.nlm.nih. gov/32459046/ [citado el 15 de septiembre de 2020].
- 44.- Marietta M, Ageno W, Artoni A, De Candia E, Gresele P, Marchetti M, et al. COVID-19 and haemostasis: A position paper from Italian Society on Thrombosis and Haemostasis (SISET). Blood Transfus [Internet]. 2020; 18 (3): 167-9. Available from: https://pubmed.ncbi.nlm.nih.gov/32281926/ [citado el 15 de septiembre de 2020].
- 45.- Barnes G D, Burnett A, Allen A, Blumenstein M, Clark N P, Cuker A, et al. Thromboembolism and anticoagulant therapy during the COVID-19 pandemic: interim clinical guidance from the anticoagulation forum. J Thromb Thrombolysis [Internet]. 2020; 50 (1): 72-81. Available from: http:// link.springer.com/10.1007/s11239-020-02138-z [citado el 15 de septiembre de 2020].
- 46.- Connors J M, Levy J H. COVID-19 and its implications for thrombosis and anticoagulation. Blood [Internet]. 2020; 135 (23): 2033-40. Available from: https://pubmed. ncbi.nlm.nih.gov/32339221/ [citado el 15 de septiembre de 2020].
- 47.- Wang Y, Zhang D, Du G, Du R, Zhao J, Jin Y, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet [Internet]. 2020 May 29 [citado el 6 de mayo de 2020];395(10236):1569-78. Available

- from: https://linkinghub.elsevier.com/retrieve/pii/S0140673620310229
- 48.- Beigel J H, Tomashek K M, Dodd L E, Mehta A K, Zingman BS, Kalil A C, et al. Remdesivir for the treatment of COVID-19 - final report. N Engl J Med [Internet]. 2020; NEJMoa2007764. Available from: http:// www.nejm.org/doi/10.1056/NEJMoa2007764 [citado el 6 de agosto de 2020].
- 49.- Spinner C D, Gottlieb R L, Criner G J, Arribas López J R, Cattelan A M, Soriano Viladomiu A, et al. Effect of remdesivir vs standard care on clinical status at 11 days in patients with moderate COVID-19. JAMA [Internet]. 2020; 324 (11): 1048. Available from: https://jamanetwork.com/journals/jama/ fullarticle/2769871 [citado el 6 de septiembre de 2020].
- 50.- Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res [Internet]. 2020 Mar 4 [citado el 6 de mayo de 2020];30(3):269-71. Available from: http://www.nature.com/articles/s41422-020-0282-0
- 51.- Sheahan T P, Sims A C, Leist S R, Schäfer A, Won J, Brown A J, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun [Internet]. 2020; 11 (1): 222. Available from: http://www.nature.com/articles/s41467-019-13940-6 [citado el 6 de agosto de 2020].
- 52.- Kujawski S A, Wong K K, Collins J P, Epstein L, Killerby M E, Midgley C M, et al. Clinical and virologic characteristics of the first 12 patients with coronavirus disease 2019 (COVID-19) in the United States. Nat Med [Internet]. 2020; 26 (6): 861-8. Available from: http://www.nature.com/articles/s41591-020-0877-5 [citado el 6 de agosto de 2020].
- 53.- Humeniuk R, Mathias A, Cao H, Osinusi A, Shen G, Chng E, et al. Safety, tolerability, and pharmacokinetics of remdesivir, an antiviral for treatment of COVID-19, in healthy subjects. Clin Transl Sci [Internet]. 2020; 13 (5): cts.12840. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/cts.12840 [citado el 6 de agosto de 2020].
- 54.- Goldman J D, Lye D C B, Hui D S, Marks K M, Bruno R, Montejano R, et al. Remdesivir for 5 or 10 days in patients with severe COVID-19. N Engl J Med [Internet]. 2020; NEJMoa2015301. Available from: http://www.nejm.org/doi/10.1056/NEJMoa2015301 [citado el 6 de agosto de 2020].
- 55.- Grein J, Ohmagari N, Shin D, Díaz G, Asperges E, Castagna A, et al. Compassionate use of remdesivir for patients with severe COVID-19. N Engl J Med [Internet].

- 2020 Jun 11 [citado el 6 de mayo de 2020];382(24):2327-36. Available from: http://www.nejm.org/doi/10.1056/NEJMoa2007016
- 56.- Furuta Y, Gowen B B, Takahashi K, Shiraki K, Smee D F, Barnard D L. Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antiviral Res [Internet]. 2013; 100 (2): 446-54. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0166354213002635 [citado el 16 de agosto de 2020].
- 57.- Lou Y, Liu L, Qiu Y. Clinical Outcomes and Plasma concentrations of baloxavir marboxil and favipiravir in COVID-19 patients: an exploratory randomized, controlled trial (preprint). medRxiv [Internet]. 2020; 2020.04.29.20085761. Available from: https://www.medrxiv.org/content/10.1101/2020.04.29 .20085761v1 [citado el 16 de agosto de 2020].
- 58.- Chen C, Zhang Y, Huang J, Yin P, Cheng Z, Wu J, et al. Favipiravir versus arbidol for COVID-19: a randomized clinical trial (preprint). medRxiv [Internet]. 2020; Available from: https://www.medrxiv.org/content/10.1101/2020.03.17.20037432v1.full.pdf [citado el 16 de agosto de 2020].
- 59.- Ivashchenko A A, Dmitriev K A, Vostokova N V, Azarova VN, Blinow A A, Egorova A N, et al. AVIFAVIR for treatment of patients with moderate COVID-19: interim results of a Phase II/III multicenter randomized clinical trial. Clin Infect Dis [Internet]. 2020; Available from: https://academic.oup.com/cid/advance-article/doi/10.1093/cid/ciaa1176/5890024 [citado el 16 de agosto de 2020].
- 60.- Irie K, Nakagawa A, Fujita H, Tamura R, Eto M, Ikesue H, et al. Pharmacokinetics of favipiravir in critically ill patients with COVID-19. Clin Transl Sci [Internet]. 2020; 13 (5): cts.12827. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/cts.12827 [citado el 16 de agosto de 2020].
- 61.- Eloy P, Solas C, Touret F, Mentré F, Malvy D, Lamballerie X, et al. Dose rationale for favipiravir use in patients infected with SARS-CoV-2. Clin Pharmacol Ther [Internet]. 2020; 108 (2): 188. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/cpt.1877 [citado el 16 de agosto de 2020].
- 62.- Naksuk N, Lazar S, Peeraphatdit T B. Cardiac safety of off-label COVID-19 drug therapy: a review and proposed monitoring protocol. Eur Hear J Acute Cardiovasc Care [Internet]. 2020; 9 (3): 215-21. Available from: http://journals.sagepub.com/ doi/10.1177/2048872620922784 [citado el 16 de agosto de 2020].
- 63.- Soh M, Hifumi T, Isokawa S, Shimizu M,
 Otani N, Ishimatsu S. Neuroleptic malignant
 syndrome in patients with COVID-19. Am J
 Emerg Med [Internet]. 2020; Available from:
 https://linkinghub.elsevier.com/retrieve/pii/

- S0735675720303843 [citado el 16 de agosto de 20201.
- 64.- Ben-Zvi I, Kivity S, Langevitz P, Shoenfeld Y. Hydroxychloroquine: from malaria to autoimmunity. Clin Rev Allergy Immunol [Internet]. 2012; 42 (2): 145-53. Available from: http://link.springer.com/10.1007/ s12016-010-8243-x [citado el 6 de mayo de 20201.
- 65.-Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Clin Infect Dis [Internet]. 2020;71(15):732-9. Available from: https://academic.oup.com/cid/ article/71/15/732/5801998 [citado el 6 de mayo de 2020].
- 66.- Shamshirian A, Hessami A, Hadara K, Alizadeh-Navaei R, Ebrahimzadeh M A, Yip G W, et al. The role of hydroxychloroquine in the age of COVID-19: a periodic systematic review and meta-analysis (preprint). medrxiv [Internet]. 2020; Available from: https://www. medrxiv.org/content/10.1101/2020.04.14.2006 5276v5 [citado el 5 de agosto de 2020].
- 67.- Ghazy R M, Almaghraby A, Shaaban R, Kamal A, Beshir H, Moursi A, et al. Effectiveness and safety of chloroquine or hydroxychloroquine as a mono-therapy or in combination with azithromycin in the treatment of COVID-19 patients: systematic review and meta-analysis (preprint). medRxiv [Internet]. 2020; Available from: http://medrxiv.org/content/ear ly/2020/07/28/2020.07.25.20162073.abstract [citado el 5 de agosto de 2020].
- Patel T K, Barvaliya M, Kevadiya B D, Patel PB, Bhalla HL. Does adding of hydroxychloroquine to the standard care provide any benefit in reducing the mortality among COVID-19 patients?: a systematic review. J Neuroimmune Pharmacol [Internet]. 2020;15(3):350-8. Available from: http://link. springer.com/10.1007/s11481-020-09930-x [citado el 5 de agosto de 2020].
- 69.- Boulware D R, Pullen M F, Bangdiwala A S, Pastick K A, Lofgren S M, Okafor E C, et al. A randomized trial of hydroxychloroquine as postexposure prophylaxis for COVID-19. N Engl J Med [Internet]. 2020; 383 (6): 517-25. Available from: http://www.nejm.org/ doi/10.1056/NEJMoa2016638 [citado el 5 de agosto de 2020].
- 70.- Mitjà O, Corbacho-Monné M, Ubals M, Tebe C, Peñafiel J, Tobias A, et al. Hydroxychloroquine for early treatment of adults with mild COVID-19: A randomizedcontrolled trial. Clin Infect Dis [Internet]. 2020; Available from: https://academic.oup. com/cid/advance-article/doi/10.1093/cid/

- ciaa1009/5872589 [citado el 5 de agosto de 20201.
- 71.- Horby P, Mafham M, Linsell L, Bell J L. Staplin N. Emberson J R. et al. Effect of hydroxychloroquine in hospitalized patients with COVID-19: Preliminary results from a multi-centre, randomized, controlled trial (preprint). medRxiv [Internet]. 2020; Available from: https://doi. org/10.1101/2020.07.15.20151852 [citado el 5 de agosto de 2020].
- 72.- Chen Z, Hu J, Zhang Z, Jiang S, Han S, Yan D, et al. Efficacy of hydroxychloroquine in patients with COVID-19: results of a randomized clinical trial (preprint). medRxiv [Internet], 2020; 7: 2020.03.22.20040758. Available from: https://www.medrxiv.org/cont ent/10.1101/2020.03.22.20040758v3 [citado el 6 de mayo de 2020].
- 73.- Chen J, Liu D, Liu L, Liu P, Xu Q, Xia L, et al. A pilot study of hydroxychloroquine in treatment of patients with common coronavirus disease-19 (COVID-19). J Zhejiang Univ (Med Sci) [Internet]. 2020; 49 (February): 1-10. Available from: http://www. zjujournals.com/med/EN/10.3785/j.issn.1008-9292.2020.03.03 [citado el 6 de mayo de 20201.
- 74.- Tang W, Cao Z, Han M, Wang Z, Chen J, Sun W, et al. Hydroxychloroquine in patients mainly with mild to moderate COVID-19: an open-label, randomized, controlled trial (preprint). medRxiv [Internet]. 2020; 2020.04.10.20060558. Available from: https:// www.medrxiv.org/content/10.1101/2020.04.10 .20060558v2 [citado el 6 de mayo de 2020].
- Skipper C P, Pastick K A, Engen N W, Bangdiwala A S, Abassi M, Lofgren S M, et al. Hydroxychloroquine in nonhospitalized adults with early COVID-19. Ann Intern Med [Internet]. 2020; M20-4207:M20-4207. Available from: https://www.acpjournals.org/ doi/10.7326/M20-4207 [citado el 5 de agosto
- 76.- Abd-Elsalam S, Esmail ES, Khalaf M, Abdo EF, Medhat MA, Abd El Ghafar MS, et al. Hydroxychloroquine in the treatment of COVID-19: a multicenter randomized controlled study. Am J Trop Med Hvg [Internet]. 2020; 103 (4): 1635-9. Available from: http://www.ajtmh.org/content/ journals/10.4269/ajtmh.20-0873 [citado el 6 de septiembre de 2020].
- Kamran S M, Mirza, Zill-e-H, Naseem A Azam R, Ullah N, Saeed F, et al. Clearing the fog: Is HCQ effective in reducing COVID-19 progression: A randomized controlled trial (preprint). medRxiv [Internet]. 2020; 2020.07.30.20165365. Available from: https:// doi.org/10.1101/2020.07.30.20165365 [citado el 6 de septiembre de 2020].
- Molina J M, Delaugerre C, Le Goff J,

- Mela-Lima B, Ponscarme D, Goldwirt L. et al. No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxychloroguine and azithromycin in patients with severe COVID-19 infection. Médecine Mal Infect [Internet]. 2020;50(4):384. Available from: https://linkinghub.elsevier.com/retrieve/pii/ S0399077X20300858 [citado el 6 de mayo de
- Dahly D, Gates S, Morris T. Statistical review of hydroxychloroquine and azithomycin as a treatment of COVID-19: results of an openlabel non-randomized clinical trial. Zenodo [Internet]. 2020;18. Available from: https:// zenodo.org/record/3724167#.XrNjj55Kipo [citado el 6 de mayo de 2020].
- Rosenberg E S, Dufort E M, Udo T, Wilberschied L A, Kumar J, Tesoriero J. et al. Association of treatment with hydroxychloroquine or azithromycin with in-hospital mortality in patients with COVID-19 in New York State. JAMA [Internet]. 2020; 323 (24): 2493. Available from: https://jamanetwork.com/journals/jama/ fullarticle/2766117 [citado el 12 de mayo de
- 81.- Chorin E, Dai M, Shulman E, Wadhwani L, Bar-Cohen R, Barbhaiya C, et al. The OT interval in patients with COVID-19 treated with hydroxychloroquine and azithromycin. Nat Med [Internet]. 2020; 26 (6): 808-9. Available from: http://www.nature.com/ articles/s41591-020-0888-2 [citado el 6 de agosto de 2020].
- Cavalcanti A B, Zampieri F G, Rosa R G, Azevedo L C P, Veiga V C, Avezum A, et al. Hydroxychloroquine with or without azithromycin in mild-to-moderate COVID-19. N Engl J Med [Internet]. 2020; NEJMoa2019014. Available from: http:// www.nejm.org/doi/10.1056/NEJMoa2019014 [citado el 5 de agosto de 2020].
- 83.- Yao T, Qian J, Zhu W, Wang Y, Wang G. A systematic review of lopinavir therapy for SARS coronavirus and MERS coronavirus-A possible reference for coronavirus disease-19 treatment option. J Med Virol [Internet]. 2020; 92 (6): 556-63. Available from: https:// onlinelibrary.wiley.com/doi/abs/10.1002/ jmv.25729 [citado el 6 de mayo de 2020].
- Chu C M. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax [Internet]. 2004; 59 (3): 252-6. Available from: https://thorax.bmj. com/lookup/doi/10.1136/thorax.2003.012658 [citado el 6 de mayo de 2020].
- Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A trial of lopinavir-ritonavir in adults hospitalized with severe COVID-19. N Engl J Med [Internet]. 2020; 382 (19): 1787-99. Available from: http://www.nejm.org/

- doi/10.1056/NEJMoa2001282 [citado el 6 de mayo de 2020].
- 86.- University of Oxford. Statement from the chief investigators of the Randomised Evaluation of COVid-19 thERapY (RECOVERY) Trial on lopinavir-ritonavir [Internet]. 2020. Available from: www. recoverytrial.net [citado el 6 de agosto de 2020].
- 87.- Caly L, Druce J D, Catton M G, Jans D A, Wagstaff K M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res [Internet]. 2020; 178: 104787. Available from: https:// linkinghub.elsevier.com/retrieve/pii/ S0166354220302011 [citado el 19 de mayo de 2020].
- 88.- Momekov G, Momekova D. Ivermectin as a potential COVID-19 treatment from the pharmacokinetic point of view (preprint). medRxiv [Internet]. 2020; 2020.04.11.20061804. Available from: https://www.medrxiv.org/content/10.1101/2020.04.11.20061804v1 [citado el 19 de mayo de 2020].
- 89.- Gorial F I, Mashhadani S, Sayaly H M, Dakhil B D, AlMashhadani M M, Aljabory A M, et al. Effectiveness of ivermectin as add-on therapy in COVID-19 management (Pilot Trial) (preprint). medRxiv [Internet]. 2020; 2 (December 2019): 2020.07.07.20145979. Available from: http://medrxiv.org/content/ear ly/2020/07/08/2020.07.07.20145979.abstract [citado el 6 de septiembre de 2020].
- 90.- Rajter J C, Sherman M S, Fatteh N, Vogel F, Sacks J, Rajter J-J. ICON (Ivermectin in COVID Nineteen) study: use of ivermectin is associated with lower mortality in hospitalized patients with COVID19 (preprint). medRxiv [Internet]. 2020; 2020.06.06.20124461. Available from: https://doi.org/10.1101/2020.06.06.20124461 [citado el 6 de septiembre de 2020].
- 91.- Zhang S, Li L, Shen A, Chen Y, Qi Z. Rational Use of Tocilizumab in the treatment of novel coronavirus pneumonia. Clin Drug Investig [Internet]. 2020;40(6):511-8. Available from: http://link.springer.com/10.1007/s40261-020-00917-3 [citado el 6 de mayo de 2020].
- 92.- Mehta P, McAuley D F, Brown M, Sánchez E, Tattersall R S, Manson J J. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet [Internet]. 2020; 395 (10229): 1033-4. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0140673620306280 [citado el 5 de agosto de 2020].

- 93.- Cortegiani A, Ippolito M, Greco M, Granone V, Protti A, Gregoretti C, et al. Rationale and evidence on the use of tocilizumab in COVID-19: a systematic review. Pulmonology [Internet]. 2020; Available from: https://linkinghub.elsevier.com/retrieve/pii/S2531043720301537 [citado el 5 de septiembre de 2020].
- 94.- Lan S-H, Lai C-C, Huang H-T, Chang S-P, Lu L-C, Hsueh P-R. Tocilizumab for severe COVID-19: a systematic review and meta-analysis. Int J Antimicrob Agents [Internet]. 2020; 56 (3): 106103. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0924857920302867 [citado el 5 de agosto de 2020].
- 95.- Rodríguez-Baño J, Pachón J, Carratalà J, Ryan P, Jarrín I, Yllescas M, et al. Treatment with tocilizumab or corticosteroids for COVID-19 patients with hyperinflammatory state: a multicentre cohort study (SAM-COVID-19). Clin Microbiol Infect [Internet]. 2020 Aug 26; Available from: https://linkinghub.elsevier.com/retrieve/pii/S1198743X20304924 [citado el 6 de septiembre de 2020].
- 96.- Rosas I O, Bräu N, Waters M, Go R, Hunter B D, Bhagani S, et al. Tocilizumab in hospitalized patients with COVID-19 pneumonia (preprint). medRxiv [Internet]. 2020;2020.08.27.20183442. Available from: https://doi.org/10.1101/2020.08.27.20183442 [citado el 6 de septiembre de 2020].
- 97.- ClinicalTrials.gov. A study to evaluate the efficacy and safety of remdesivir plus tocilizumab compared with remdesivir plus placebo in hospitalized participants with severe COVID-19 pneumonia [Internet]. 2020. Available from: https://clinicaltrials.gov/ct2/show/NCT04409262 [citado el 5 de agosto de 2020].
- 98.- ClinicalTrials.gov. A study to investigate intravenous tocilizumab in participants with moderate to severe COVID-19 pneumonia (preprint) [Internet]. 2020. Available from: https://clinicaltrials.gov/ct2/show/NCT04363736 [citado el 5 de agosto de 2020].
- 99.- Liu S T H, Lin H-M, Baine I, Wajnberg A, Gumprecht J P, Rahman F, et al. Convalescent plasma treatment of severe COVID-19: A matched control study (preprint). medRxiv [Internet]. 2020;2020.05.20.20102236. Available from: https://doi. org/10.1101/2020.05.20.20102236 [citado el 15 de septiembre de 2020].
- 100.- Duan K, Liu B, Li C, Zhang H, Yu T, Qu J,

- et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci [Internet]. 2020; 117 (17): 9490-6. Available from: http://www.pnas.org/ lookup/doi/10.1073/pnas.2004168117 [citado el 15 de septiembre de 2020].
- 101.- Davey R T, Fernández-Cruz E, Markowitz N, Pett S, Babiker A G, Wentworth D, et al. Anti-influenza hyperimmune intravenous immunoglobulin for adults with influenza A or B infection (FLU-IVIG): a double-blind, randomised, placebo-controlled trial. Lancet Respir Med [Internet]. 2019; 7 (11): 951-63. Available from: https://linkinghub.elsevier.com/retrieve/pii/S221326001930253X [citado el 6 de mayo de 2020].
- 102.- Beigel J H, Tebas P, Elie-Turenne M-C, Bajwa E, Bell T E, Cairns C B, et al. Immune plasma for the treatment of severe influenza: an openlabel, multicentre, phase 2 randomised study.

 Lancet Respir Med [Internet]. 2017;5(6):500-11. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2213260017301741 [citado el 6 de mayo de 2020].
- 103.- Beigel J H, Aga E, Elie-Turenne M-C, Cho J, Tebas P, Clark C L, et al. Anti-influenza immune plasma for the treatment of patients with severe influenza A: a randomised, double-blind, phase 3 trial. Lancet Respir Med [Internet]. 2019; 7 (11): 941-50. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2213260019301997 [citado el 6 de mayo de 2020].
- 104.- Li L, Zhang W, Hu Y, Tong X, Zheng S, Yang J, et al. Effect of convalescent plasma therapy on time to clinical improvement in patients with severe and life-threatening COVID-19. JAMA [Internet]. 2020; 324 (5): 460. Available from: https://jamanetwork.com/ journals/jama/fullarticle/2766943 [citado el 15 de septiembre de 2020].
- 105.- Piechotta V, Chai K L, Valk S J, Doree C, Monsef I, Wood E M, et al. Convalescent plasma or hyperimmune immunoglobulin for people with COVID-19: a living systematic review. Cochrane Database Syst Rev [Internet]. 2020; 2020 (7). Available from: http://doi.wiley.com/10.1002/14651858. CD013600.pub2 [citado el 15 de septiembre de 2020].
- 106.- Joyner M, Wright R S, Fairweather D, Senefeld J, Bruno K, Klassen S, et al. Early safety indicators of COVID-19 convalescent plasma in 5,000 patients (preprint). medRxiv [Internet]. 2020; Available from: /pmc/articles/ PMC7274247/?report=abstract [citado el 15 de septiembre de 2020].